
WHAT’S IN THIS CHAPTER?

➤ Using WebSockets
➤ Overview of SignalR
➤ Creating a SignalR hub
➤ Creating a SignalR client with HTML and JavaScript
➤ Creating a SignalR .NET client
➤ Using groups with SignalR
➤ Overview of WebHooks
➤ Creating WebHook receivers for GitHub and Dropbox

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The Wrox.com code downloads for this chapter are found at www.wrox.com on the Download
Code tab. The source code is also available at https://github.com/ProfessionalCSharp/
ProfessionalCSharp7 in the directory SignalRAndWebHooks.

The code for this chapter is divided into the following major examples:

➤ WebSocket Server and Client
➤ Chat Server using SignalR
➤ Windows App Chat Client using SignalR
➤ SaaS WebHooks Receiver Sample

OVERVIEW
With .NET you can use events to get notifi cations. You can register an event handler method with an
event, also known as subscribing to events, and as soon as the event is fi red from another place, your
method gets invoked. Events cannot be used with web applications.

Previous chapters have covered a lot about web applications and web services. What was common
with these applications and services is that the request was always started from the client application.
The client makes an HTTP request and receives a response.

Bonus Chapter 3

72 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

What if the server has some news to tell? There’s nothing like events that you can subscribe to, or are there?
With the web technologies you’ve seen so far, this can be resolved by the client polling for new information.
The client has to make a request to the server to ask whether new information is available. Depending on the
request interval defi ned, this way of communication results in either a high load of requests on the network
that just result in “no new information is available,” or the client misses actual information and when ask-
ing for new information receives information that is already old.

If the client is itself a web application, the direction of the communication can be turned around, and the
server can send messages to the client. This is how WebHooks work.

With clients behind a fi rewall, using the HTTP protocol there’s no way for the server to initiate a connection
to the client. The connection always needs to be started from the client side. Because HTTP connections are
stateless, and clients often can’t connect to ports other than port 80, WebSockets can help. WebSockets are
initiated with an HTTP request, but they’re upgraded to a WebSocket connection where the connection stays
open. Using the WebSockets protocol, the server can send information to the client over the open connection
as soon as the server has new information.

SignalR is an ASP.NET Core web technology that offers an easy abstraction over WebSockets. Using SignalR
is a lot easier than programming using the sockets interface, and you get more features right out of the box.

NOTE At the time of this writing, both SignalR and WebHooks are in a preview state.
Check the book’s github site for updates on the samples as SignalR is released with
ASP.NET Core.

WebHooks is a technology that is offered by many SaaS (Software as a Service) providers. You can register
with such a provider, provide a public Web API to the service provider, and this way the service provider can
call back as soon as new information is available.

This chapter starts with a simple WebSocket client and server and covers both SignalR and WebHooks. As
these technologies complement each other, they can also be used in combination.

WEBSOCKETS
Before getting into SignalR, let’s get at the foundation—creating a server and client using .NET Core. Using
WebSockets, the communication starts with an HTTP request:

GET /chat HTTP/1.1
Host: sampleserver.cninnovation.com
Upgrade: websocket
Connection: Upgrade
...

The server answers with a switch of protocols:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
...

From there on, the communication continues using WebSockets. This makes it possible to communicate
across fi rewalls that usually have outgoing ports 80 and 443 enabled for communication.

WebSockets ❘ 73

WebSockets Server
The server application is started as an empty ASP.NET Core Web project. The NuGet package Microsoft
.AspNetCore.WebSockets is already included with the metapackage Microsoft.AspNetCore.All, so no
additional package is needed.

With the custom protocol used to communicate via WebSockets, the client needs to send the text
REQUESTMESSAGES: followed by a term about the message to receive. The server answers with any number
of messages containing this message term, and EOS (end of sequence) when no longer messages for this term
are sent. For closing the communication, the client can send the text SERVERCLOSE, which tells the server to
close the communication.

In the Startup class, to enable the middleware for WebSockets, you need to invoke the UseWebSockets
extension method for the IApplicationBuilder (code fi le WebSocketsSample/WebSocketsServer/
Startup.cs):

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env,
 ILoggerFactory loggerFactory)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseWebSockets();
 //...
 }
}

NOTE Middleware is explained in Chapter 30, “ASP.NET Core.”

Communication via WebSockets is implemented with custom middleware. The custom middleware is
added to the request pipeline when the URL path starts with /samplesockets. In the middleware imple-
mentation, a check is done to see whether the HTTP context is a WebSocket request. The HttpContext
defi nes the property WebSockets that returns a WebSocketManager. Using the WebSocketManager,
you can verify whether the request was a WebSocket request with the property IsWebSocketRequest.
You can also check for WebSocket subprotocols that have been requested. Here, a custom protocol
is used, which means subprotocols are not needed. If the request is a WebSocket request, the method
AcceptWebSocketAsync transitions the request to a WebSocket connection, and now the com-
munication using WebSockets can continue by calling the method SendMessagesAsync (code fi le
WebSocketsSample/WebSocketsServer/Startup.cs):

public void Configure(IApplicationBuilder app, IHostingEnvironment env,
 ILoggerFactory loggerFactory)
{
 //...
 app.Map("/samplesockets", app2 =>
 {

74 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

app2.Use(async (context, next) =>
 {
 if (context.WebSockets.IsWebSocketRequest)
 {
 var webSocket = await context.WebSockets.AcceptWebSocketAsync();
 await SendMessagesAsync(context, webSocket,
 loggerFactory.CreateLogger("SendMessages"));
 }
 else
 {
 await next();
 }
 });
 });

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Web Sockets sample");
 });
}

The implementation of the SendMessagesAsync method sends and receives messages via the
WebSocket that is received in one parameter. After a message is received that starts the message content
REQUESTMESSAGES:, the server loops and returns 10 messages with a delay of 1 second using the same con-
nection. With the last message sent, the string EOS is added to the message content.

Sending messages via WebSockets is done with the SendAsync method. SendAsync uses an ArraySegment
that wraps the byte array. With the WebSocketMessageType, you defi ne whether to send text or binary
data. The third parameter marks the end of the message. If the message is larger than the buffer, you need to
set this parameter only with the last SendAsync, where the last part of the message is set to true, and you
mark the other parts of the message with the SendAsync as incomplete. The last parameter allows you to
send a cancellation token, which allows you to cancel the invocation before the timeout occurs. When the
request SERVERCLOSE is received, the communication is closed by invoking the CloseAsync method of the
WebSocket (code fi le WebSocketsSample/WebSocketsServer/Startup.cs):

private async Task SendMessagesAsync(HttpContext context, WebSocket webSocket,
 ILogger logger)
{
 var buffer = new byte[4096];

WebSocketReceiveResult result = await webSocket.ReceiveAsync(
 new ArraySegment<byte>(buffer), CancellationToken.None);
 while (!result.CloseStatus.HasValue)
 {
 if (result.MessageType == WebSocketMessageType.Text)
 {
 string content = Encoding.UTF8.GetString(buffer, 0, result.Count);
 if (content.StartsWith("REQUESTMESSAGES:"))
 {
 string message = content.Substring("REQUESTMESSAGES:".Length);
 for (int i = 0; i < 10; i++)
 {
 string messageToSend = $"{message} - {i}";
 if (i == 9)
 {
 messageToSend += ";EOS"; // send end of sequence to not let the
 // client wait for another message
 }
 byte[] sendBuffer = Encoding.UTF8.GetBytes(messageToSend);

await webSocket.SendAsync(new ArraySegment<byte>(sendBuffer),
 WebSocketMessageType.Text, endOfMessage: true,
 CancellationToken.None);

WebSockets ❘ 75

 logger.LogDebug("sent message {0}", messageToSend);
 await Task.Delay(1000);
 }
 }

 if (content.Equals("SERVERCLOSE"))
 {
 await webSocket.CloseAsync(WebSocketCloseStatus.NormalClosure,
 "Bye for now", CancellationToken.None);
 logger.LogDebug("client sent close request, socket closing");
 return;
 }
 else if (content.Equals("SERVERABORT"))
 {
 context.Abort();
 }
 }

result = await webSocket.ReceiveAsync(buffer, CancellationToken.None);
 }
}

NOTE The invocation of the SendAsync method uses named arguments with a middle
parameter. Named arguments are discussed in Chapter 3, “Objects and Types.” Using
non-trailing named arguments requires C# 7.2. Cancellation tokens are covered in
Chapter 21, “Tasks and Parallel Programming.”

WebSockets Client
The WebSockets client is a .NET Core console app. This app uses these namespaces:

System

System.Net.WebSockets

System.Text

System.Threading

System.Threading.Tasks

This application type needs to initiate a connection to the WebSockets server using ws: for the protocol
and the path samplesockets as defi ned by the URL mapping in the server (code fi le WebSocketsSample/
WebSocketClient/Program.cs):

static async Task Main()
{
 Console.WriteLine("Client - wait for server");
 Console.ReadLine();
 await InitiateWebSocketCommunication("ws://localhost:6295/samplesockets");
 Console.WriteLine("Program end");
 Console.ReadLine();
}

The communication is started by creating a ClientWebSocket and invoking the method ConnectAsync.
From there (with the server invoking AcceptWebSocketAsync), communication fl ows. The method
SendAndReceiveAsync is used for the main fl ow. After this method completes, the client sends a
message containing the SERVERCLOSE text, where the server initiates a close. The client receives the

76 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

CloseStatus and CloseStatusDescription from the server with information about the close (code fi le
WebSocketsSample/WebSocketClient/Program.cs):

static async Task InitiateWebSocketCommunication(string address)
{
 try
 {
 var webSocket = new ClientWebSocket();
 await webSocket.ConnectAsync(new Uri(address), CancellationToken.None);

 await SendAndReceiveAsync(webSocket, "A");
 await SendAndReceiveAsync(webSocket, "B");
 await webSocket.SendAsync(
 new ArraySegment<byte>(Encoding.UTF8.GetBytes("SERVERCLOSE")),
 WebSocketMessageType.Text, endOfMessage: true, CancellationToken.None);
 var buffer = new byte[4096];
 var result = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer),
 CancellationToken.None);
 Console.WriteLine($"received for close: {result.CloseStatus} " +
 $"{result.CloseStatusDescription} " +
 $"{Encoding.UTF8.GetString(buffer, 0, result.Count)}");
 await webSocket.CloseAsync(WebSocketCloseStatus.NormalClosure, "Bye",
 CancellationToken.None);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

In the method SendAndReceiveAsync, the client fi rst sends the message containing the text
REQUESTMESSAGES: and waits to receive any number of messages until the EOS string is contained (code fi le
WebSocketsSample/WebSocketClient/Program.cs):

static async Task SendAndReceiveAsync(WebSocket webSocket, string term)
{
 byte[] data = Encoding.UTF8.GetBytes($"REQUESTMESSAGES:{term}");
 var buffer = new byte[4096];

 await webSocket.SendAsync(new ArraySegment<byte>(data),
 WebSocketMessageType.Text, endOfMessage: true, CancellationToken.None);
 WebSocketReceiveResult result;
 bool sequenceEnd = false;
 do
 {
 result = await webSocket.ReceiveAsync(new ArraySegment<byte>(buffer),
 CancellationToken.None);
 string dataReceived = Encoding.UTF8.GetString(buffer, 0, result.Count);
 Console.WriteLine($"received {dataReceived}");
 if (dataReceived.Contains("EOS"))
 {
 sequenceEnd = true;
 }
 } while (!(result?.CloseStatus.HasValue ?? false) && !sequenceEnd);
}

When you start both the server and the client, you can see the connection stays opened, and the server sends
messages to the client after the client requests:

Client - wait for server
received A - 0
received A - 1
received A - 2

A Simple Chat Using SignalR ❘ 77

received A - 3
received A - 4
received A - 5
received A - 6
received A - 7
received A - 8
received A - 9;EOS
received B - 0
received B - 1
received B - 2
received B - 3
received B - 4
received B - 5
received B - 6
received B - 7
received B - 8
received B - 9;EOS
received for close: NormalClosure Bye for now
Program end

NOTE When you start the client and server, pay attention to change the port number
the client needs to connect to the port number of your server.

A SIMPLE CHAT USING SIGNALR
With your application, you can use WebSockets directly or use an abstraction layer such as SignalR, which
means you don’t need to deal with sockets. You have an easy way to return answers to all clients or a group
of clients.

The fi rst SignalR sample application is a chat application, which is easy to create with SignalR. With
this application, multiple clients can be started to communicate with each other via the SignalR hub (see
Figure BC3-1). When one of the client applications sends a message, all the connected clients receive this
message in turn.

SignalR
Hub

Client

Client

Client

FIGURE BC3-1

The server application is started as an empty ASP.NET Core web application. One of the clients is cre-
ated with HTML and JavaScript, and the other client application is a Windows app that uses the Universal
Windows Platform.

78 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

Creating a Hub
The empty ASP.NET Core web project is named ChatServer. After you create the project, add a new item
and select SignalR Hub class). Adding this item also adds the NuGet packages that are needed server side.

The main functionality of SignalR is defi ned with the hub. The hub is indirectly invoked by the clients,
and in turn the clients are called. The class ChatHub derives from the base class Hub to get the needed
hub functionality. The method Send is defi ned to be invoked by the client applications sending a message
to the other clients. You can use any method name with any number of parameters. The client code just
needs to match the method name as well as the parameters. To send a message to the clients, the Clients
property of the Hub class is used. The Clients property returns an object that implements the interface
IHubCallerClients. This interface allows you to send messages to specifi c clients or to all connected cli-
ents. To return a message to just a single client, you can use the Client method to pass a connection iden-
tifi er. The sample code sends a message to all clients using the All property. The All property returns an
IClientProxy. IClientProxy defi nes the method InvokeAsync to invoke a method within the client. The
method invoked is the fi rst parameter, which is the method name. The InvokeAsync method is overloaded
to allow passing up to 10 arguments to the client method. In case you have more than 10, an overload
allows passing an object array. With the sample code, the method name defi ned is BroadcastMessage, and
two string parameters—the name and the message—are passed to this method (code fi le SignalRSample/
ChatServer/Hubs/ChatHub.cs):

public class ChatHub: Hub
{
 public void Send(string name, string message)
 {
 Clients.All.BroadcastMessage(name, message);
 }
}

To use SignalR, the interfaces for SignalR need to be registered with the dependency injection container.
You do this in the ConfigureServices method of the Startup class—invoking the AddSignalR extension
method for the IServiceCollection interface (code fi le SignalRSample/ChatServer/Startup.cs):

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddSignalR();
 }
 //...
}

Next, you need to add the middleware for SignalR to invoke the UseSignalR extension method for the
IApplicationBuilder interface. The parameter of type HubRouteBuilder allows specifying the route for
SignalR. With an overload of the method, you can also specify options for the underlying WebSockets (code
fi le SignalRSample/ChatServer/Startup.cs):

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseStaticFiles();

 app.UseSignalR(routes =>
 {
 routes.MapHub<ChatHub>("chat");
 });

A Simple Chat Using SignalR ❘ 79

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("SignalR Sample");
 });
}

NOTE For serving the HTML client from the same web as the SignalR server, the
extension method UseStaticFiles needs to be added to the middleware pipeline.

Creating a Client with HTML and JavaScript
The previous version of SignalR included a JavaScript library with jQuery extensions. At that time, nearly
every website was using jQuery to access the DOM elements of the HTML page. Nowadays, jQuery is just
one of many scripting libraries used. That’s why SignalR is now built without jQuery.

The SignalR scripting libraries can be retrieved from the NPM server. In case you don’t have the npm
command-line utility already installed, you can download it from npmjs.com.

You can create an NPM confi guration fi le using Visual Studio by adding the item npm Confi guration File to
the project, or by using the command line

> npm init

The SignalR client library can be installed to the project using

> npm install @aspnet/signalr-client

This downloads the library and adds it to the fi le package.json (package fi le SignalRSample/
ChatServer/package.json):

{
 "version": "1.0.0",
 "name": "asp.net",
 "private": true,
 "devDependencies": {},
 "dependencies": {
 "@aspnet/signalr-client": "^1.0.0-alpha2-final"
 }
}

The downloaded JavaScript libraries from the node_modules/@aspnet/signalr-client/dist/
browser folder need to be copied to the wwwroot/js folder so the libraries are available when you run the
application.

For the HTML client, two input fi elds and a button are defi ned to allow the user to enter a name and a mes-
sage and then click a button so send the message to the SignalR server. The messages received will be dis-
played in the output element (code fi le SignalRSample/ChatServer/wwwroot/ChatWindow.html):

<label for="name">Name:</label>
<input type="text" id="name" />

<label for="message">Message:</label>
<input type="text" id="message" />

<input id="sendButton" type="button" value="send" />
<p />
<output id="output"></output>

The fi rst script element references the JavaScript fi le from the SignalR library. Remember to use the min fi le
for production. When the DOM tree of the HTML fi le is loaded, a connection to the Chat server is created.

80 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

Using connection.on, you defi ne what should happen when a message arrives from the SignalR server.
The fi rst parameter is the name of the method used when calling the proxy in the server except the casing
changes from C# Pascal casing to JavaScript camel casing. With the second parameter, a function is defi ned
that has the same number of parameters as are sent from the server. When a message arrives, the content
of the output element changes to include this message. After registering to this event, the connection to the
SignalR server is started, which invokes the start function. When the connection completes successfully,
the then function defi nes what’s next. Here, an event listener is assigned to the click event of the button to
send the message to the SignalR server. The method that is invoked with the SignalR server is defi ned with
the fi rst parameter of the invoke function—send in the sample code—that’s the same name as the method
is defi ned in the ChatHub (just the casing differs). Again, the same number of arguments is used (code fi le
SignalRSample/ChatServer/wwwroot/ChatWindow.html):

<script src="js/signalr-client-1.0.0-alpha2-final.js"></script>
<script>
 document.addEventListener("DOMContentLoaded", function () {
 let connection = new signalR.HubConnection('/chat');
 connection.on('broadcastMessage', (name, message) => {
 console.log(message);
 document.getElementById('output').innerHTML +=
 `message from ${name}: ${message}
`;
 });

 connection.start().then(function () {
 document.getElementById('sendButton')
 .addEventListener('click', function () {
 let name = document.getElementById('name').value;
 let message = document.getElementById('message').value;

 connection.invoke('send', name, message);
 });
 });
 });
 </script>

NOTE The sample code makes use of the event DOMContentLoaded instead of win-
dow.onload. window.onload is fi red when the complete page is loaded, including the
images and CSS fi les. DOMContentLoaded is fi red before that—when the DOM tree is
ready. DOMContentLoaded is available with all modern browsers, and with Internet
Explorer starting with IE9.

When you run the application, you can open multiple browser windows—even using different browsers—
you can enter names and messages for a chat (see Figure BC3-2).

FIGURE BC3-2

A Simple Chat Using SignalR ❘ 81

When you use the Microsoft Edge Developer Tools (press F12 while Microsoft Edge is open) you can use
Network Monitoring to see the upgrade from the HTTP protocol to the WebSocket protocol, as shown in
Figure BC3-3.

FIGURE BC3-3

Creating SignalR .NET Clients
The sample .NET client application to use the SignalR server is a Windows app. The functionality is similar
to the HTML/JavaScript application shown earlier.

The user interface of the UWP application defi nes two TextBox, two Button, and one ListBox element to
enter the name and message, to connect to the service hub, and to show a list of received messages (code fi le
SignalRSample/WindowsAppChatClient/MainPage.xaml):

<TextBox Header="Name" Text="{x:Bind ViewModel.Name, Mode=TwoWay}"
 Grid.Row="0" Grid.Column="0" />
<TextBox Header="Message" Text="{x:Bind ViewModel.Message, Mode=TwoWay}"
 Grid.Row="1" Grid.Column="0" />
<StackPanel Orientation="Vertical" Grid.Column="1" Grid.RowSpan="2">
 <Button Content="Connect" Command="{x:Bind ViewModel.ConnectCommand}" />
 <Button Content="Send"
 Command="{x:Bind ViewModel.SendCommand, Mode=OneTime}" />
</StackPanel>
<ListBox ItemsSource="{x:Bind ViewModel.Messages, Mode=OneWay}" Grid.Row="2"
 Grid.ColumnSpan="2" Margin="12" />

82 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

The ApplicationServices class is implemented as a singleton to create the dependency injection (DI)
container and register services as well as view models (code fi le SignalRSample/WindowsAppChatClient/
ApplicationServices.cs):

public class ApplicationServices
{
 private ApplicationServices()
 {
 var services = new ServiceCollection();
 services.AddTransient<ChatViewModel>();
 services.AddTransient<GroupChatViewModel>();
 services.AddSingleton<IDialogService, DialogService>();
 services.AddSingleton<UrlService>();
 services.AddLogging();
 ServiceProvider = services.BuildServiceProvider();
 }

 private static ApplicationServices _instance;
 private static object _instanceLock = new object();
 private static ApplicationServices GetInstance()
 {
 lock (_instanceLock)
 {
 return _instance ?? (_instance = new ApplicationServices());
 }
 }

 public static ApplicationServices Instance => _instance ?? GetInstance();

 public IServiceProvider ServiceProvider { get; }
}

The UrlService class that is registered with the DI container contains the URL addresses to the chat server.
You need to change the BaseUri to the address that is shown when starting your SignalR server (code fi le
SignalRSample/WindowsAppChatClient/Services/UrlService.cs):

public class UrlService
{
 private const string BaseUri = "http://localhost:2952/";
 public string ChatAddress => $"{BaseUri}/chat";
 public string GroupAddress => $"{BaseUri}/groupchat";
}

Within the code-behind fi le of the view, the ChatViewModel is assigned to the ViewModel property using the
DI container (code fi le SignalRSample/WindowsAppChatClient/MainPage.xaml.cs):

public partial class MainWindow: Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 public ChatViewModel ViewModel { get; } =
 ApplicationServices.Instance.ServiceProvider.GetService<ChatViewModel>();
}

NOTE Windows apps are covered in detail in Chapter 33, “Windows Apps.” The
Model-View-View Model (MVVM) pattern is explained in Chapter 34, “Patterns with
XAML Apps.”

A Simple Chat Using SignalR ❘ 83

The hub-specifi c code is implemented in the class ChatViewModel. First, have a look at the bound proper-
ties and commands. The property Name is bound to enter the chat name, the Message property to enter the
message. The ConnectCommand property maps to the OnConnect method to initiate the connection to the
server; the SendCommand property maps to the OnSendMessage method to send a chat message (code fi le
SignalRSample/WindowsAppChatClient/ViewModels/ChatViewModel.cs):

public sealed class ChatViewModel
{
 private readonly IDialogService _dialogService;
 private readonly UrlService _urlService;

 public ChatViewModel(IDialogService dialogService, UrlService urlService)
 {
 _dialogService = dialogService;
 _urlService = urlService;

 ConnectCommand = new RelayCommand(OnConnect);
 SendCommand = new RelayCommand(OnSendMessage);
 }

 public string Name { get; set; }
 public string Message { get; set; }

 public ObservableCollection<string> Messages { get; } =
 new ObservableCollection<string>();
 public RelayCommand SendCommand { get; }
 public RelayCommand ConnectCommand { get; }
 //...
}

The OnConnect method initiates the connection to the server. You can create a HubConnection with the
HubConnectionBuilder. This builder uses a fl uent API for its confi guration. In the sample code, you
can see the URL to the server fi rst confi gured with the WithUrl method, followed by the WithLogger
method to specify a logging provider. After the confi guration is done, the Build method of the
HubConnectionBuilder creates a HubConnection. When you use these confi guration methods, you
can also confi gure the protocol to use. SignalR supports JSON (WithJsonProtocol) and MessagePack
(WithMessagePackProtocol) out of the box, but you can also create and use other providers. To register
with messages that are returned from the server, the On method is invoked. The fi rst parameter passed to
the On method defi nes the method name that is called by the server; the second parameter defi nes a del-
egate to the method that is invoked. The method OnMessageReceived has the parameters specifi ed with
the generic parameter arguments of the On method: two strings. To fi nally initiate the connection, the
StartAsync method on the HubConnection instance is invoked to connect to the SignalR server (code fi le
SignalRSample/WindowsAppChatClient/ViewModels/ChatViewModel.cs):

private HubConnection _hubConnection;

public async void OnConnect()
{
 await CloseConnectionAsync();
 _hubConnection = new HubConnectionBuilder()
 .WithUrl(_urlService.ChatAddress)
 .WithLogger(loggerFactory =>
 {
 })
 .Build();

 _hubConnection.Closed += HubConnectionClosed;
 _hubProxy.On<string, string>("BroadcastMessage", OnMessageReceived);

 try

84 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

 {
 await _hubConnection.StartAsync();
 }
 catch (HttpRequestException ex)
 {
 _dialogService.ShowMessage(ex.Message);
 }
 _dialogService.ShowMessage("client connected");
}

NOTE The MessagePack protocol is more compact than JSON and is designed for
effi ciency on the wire.

Sending messages to SignalR requires only calls to the SendAsync method of the HubConnection. The fi rst
parameter is the name of the method that should be invoked by the server; the following parameters are the
parameters of the method on the server (code fi le SignalRSample/WindowsAppChatClient/ViewModels/
ChatViewModel.cs):

Public async void OnSendMessage()
{
 try
 {
 _hubConnection.SendAsync("Send", Name, Message);
 }
 catch (Exception ex)
 {
 await _dialogService.ShowMessageAsync(ex.Message);
 }
}

When receiving a message, the OnMessageReceived method is invoked. Because this method is invoked
from a background thread, you need to switch back to the UI thread that updates bound properties and col-
lections (code fi le WindowsAppChatClient/ViewModels/ChatViewModel.cs):

public void OnMessageReceived(string name, string message)
{
 try
 {
 await CoreApplication.MainView.CoreWindow.Dispatcher
 .RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 Messages.Add($"{name}: {message}");
 });
 }
 catch (Exception ex)
 {
 await _dialogService.ShowMessageAsync(ex.Message);
 }
}

When you run the application, you can receive and send messages from the Windows app client as shown in
Figure BC3-4. You can also open the web page simultaneously and communicate between them.

Grouping Connections ❘ 85

FIGURE BC3-4

GROUPING CONNECTIONS
Usually you don’t want to communicate among all clients, but you instead want to communicate among a
group of clients. There’s support out of the box for such a scenario with SignalR.

In this section, you add another chat hub with grouping functionality and have a look at other options that
are possible using SignalR hubs. The Windows app client application is extended to enter groups and send a
message to a selected group.

Extending the Hub with Groups
To support a group chat, you create the class GroupChatHub. With the previous hub, you saw how to use
the InvokeAsync method to defi ne the message that is sent to the clients. Instead of using this method, you
can also create a custom interface as shown in the following code snippet. This interface is used as a generic
parameter with the base class Hub (code fi le SignalRSample/ChatServer/Hubs/GroupChatHub.cs):

public interface IGroupClient
{
 void MessageToGroup(string groupName, string name, string message);
}

public class GroupChatHub: Hub<IGroupClient>
{
 //...
}

AddGroup and LeaveGroup are methods defi ned to be called by the client. Registering the group, the client
sends a group name with the AddGroup method. The Hub class defi nes a Groups property where connec-
tions to groups can be registered. The Groups property of the generic Hub class returns IGroupManager.
This interface defi nes two methods: AddAsync and RemoveAsync. Both methods need a group name and a

86 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

connection identifi er to add or remove the specifi ed connection to the group. The connection identifi er is
a unique identifi er associated with a client connection. The client connection identifi er—as well as other
information about the client—can be accessed with the Context property of the Hub class. The following
code snippet invokes the AddAsync method of the IGroupManager to register a group with the connec-
tion, and the RemoveAsync method to unregister a group (code fi le SignalRSample/ChatServer/Hubs/
GroupChatHub.cs):

public Task AddGroup(string groupName) =>
 Groups.AddAsync(Context.ConnectionId, groupName);

public Task LeaveGroup(string groupName) =>
 Groups.RemoveAsync(Context.ConnectionId, groupName);

NOTE The Context property of the Hub class returns an object of type
HubCallerContext. With this class, you can not only access the connection identifi er
associated with the connection, but you can access other information about the client,
such as the user if the user is authorized.

Invoking the Send method—this time with three parameters including the group—sends information to
all connections that are associated with the group. The Clients property is now used to invoke the Group
method. The Group method accepts a group string to send the MessageToGroup message to all connections
associated with the group name. With an overload of the Group method you can add connection IDs that
should be excluded. Because the Hub implements the interface IGroupClient, the Groups method returns
the IGroupClient. This way, the MessageToGroup method can be invoked using compile-time support
(code fi le SignalRSample/ChatServer/Hubs/GroupChatHub.cs):

public void Send(string group, string name, string message) =>
 Clients.Group(group).MessageToGroup(group, name, message);

Several other extension methods are defi ned to send information to a list of client connections. You’ve seen
the Group method to send messages to a group of connections that’s specifi ed by a group name. With this
method, you can exclude client connections. For example, the client who sent the message might not need
to receive it. The Groups method accepts a list of group names where a message should be sent to. You’ve
already seen the All property to send a message to all connected clients. Methods to exclude sending the
message to the caller are OthersInGroup and OthersInGroups. These methods send a message to one spe-
cifi c group excluding the caller, or a message to a list of groups excluding the caller.

You can also send messages to a customized group that’s not based on the built-in grouping function-
ality. Here, it helps to override the methods OnConnectedAsync and OnDisconnectedAsync. The
OnConnectedAsync method is invoked every time a client connects; the OnDisconnectedAsync method is
invoked when a client disconnects. Within these methods, you can access the Context property of the Hub
class to access client information as well as the client-associated connection ID. Here, you can write the
connection information to a shared state to have your server scalable using multiple instances, accessing the
same shared state. You can also select clients based on your own business logic or implement priorities when
sending messages to privilege specifi c clients.

public override Task OnConnectedAsync() =>
 base.OnConnectedAsync();

public override Task OnDisconnectedAsync(Exception exception) =>
 base.OnDisconnected(exception);

Grouping Connections ❘ 87

Extending the Windows Client with Groups
After having the grouping functionality with the hub ready, you can extend the Windows app client appli-
cation. For the grouping features, another XAML page associated with the GroupChatViewModel class is
defi ned.

The GroupChatViewModel class defi nes some more properties and commands compared to the
ChatViewModel defi ned earlier. The NewGroup property defi nes the group the user registers to. The
SelectedGroup property defi nes the group that is used with the continued communication, such as send-
ing a message to the group or leaving the group. The SelectedGroup property needs change notifi cation to
update the user interface on changing this property; that’s why the INotifyPropertyChanged interface is
implemented with the GroupChatViewModel class, and the set accessor of the property SelectedGroup
fi res a notifi cation. Commands to join and leave the group are defi ned as well: the EnterGroupCommand
and LeaveGroupCommand properties (code fi le SignalRSample/WindowsAppChatClient/ViewModels/
GroupChatViewModel.cs):

public sealed class GroupChatViewModel: INotifyPropertyChanged
{
 private readonly IDialogService _dialogService;
 private readonly UrlService _urlService;

 public GroupChatViewModel(IDialogService dialogService,
 UrlService urlService)
 {
 _dialogService = dialogService;
 _urlService = urlService;

 ConnectCommand = new RelayCommand(OnConnect);
 SendCommand = new RelayCommand (OnSendMessage);
 EnterGroupCommand = new RelayCommand (OnEnterGroup);
 LeaveGroupCommand = new RelayCommand (OnLeaveGroup);
 }

 public event PropertyChangedEventHandler PropertyChanged;
 private void Set<T>(ref T item, T value,
 [CallerMemberName] string propertyName = null)
 {
 if (!EqualityComparer<T>.Default.Equals(item, value))
 {
 item = value;
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }
 }

 public string Name { get; set; }
 public string Message { get; set; }
 public string NewGroup { get; set; }
 private string _selectedGroup;
 public string SelectedGroup
 {
 get => _selectedGroup;
 set => Set(ref _selectedGroup, value);
 }

 public ObservableCollection<string> Messages { get; } =
 new ObservableCollection<string>();
 public ObservableCollection<string> Groups { get; } =

88 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

 new ObservableCollection<string>();
 public ICommand SendCommand { get; }
 public ICommand ConnectCommand { get; }
 public ICommand EnterGroupCommand { get; }
 public ICommand LeaveGroupCommand { get; }
 //...
}

The handler methods for the EnterGroupCommand and LeaveGroupCommand commands are shown in the
following code snippet. Here, the AddGroup and RemoveGroup methods are called within the group hub
(code fi le SignalRSample/WindowsAppChatClient/ViewModels/GroupChatViewModel.cs):

public async void OnEnterGroup()
{
 try
 {
 await _hubConnection.InvokeAsync("AddGroup", NewGroup);
 Groups.Add(NewGroup);
 SelectedGroup = NewGroup;
 }
 catch (Exception ex)
 {
 await _dialogService.ShowMessageAsync(ex.Message);
 }
}

public async void OnLeaveGroup()
{
 try
 {
 await _hubConnection.InvokeAsync("LeaveGroup", SelectedGroup);
 Groups.Remove(SelectedGroup);
 }
 catch (Exception ex)
 {
 _dialogService.ShowMessage(ex.Message);
 }
}

Sending and receiving the messages is very similar to the previous sample, with the difference that the
group information is added now (code fi le SignalRSample/WindowsAppChatClient/ViewModels/
GroupChatViewModel.cs):

public async void OnSendMessage()
{
 try
 {
 await _hubConnection.InvokeAsync("Send", SelectedGroup, Name, Message);
 }
 catch (Exception ex)
 {
 _dialogService.ShowMessage(ex.Message);
 }
}

public void OnMessageReceived(string group, string name, string message)
{
 try

Architecture of WebHooks ❘ 89

 {
 await CoreApplication.MainView.CoreWindow.Dispatcher
 .RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 Messages.Add($"{group}-{name}: {message}");
 });
 }
 catch (Exception ex)
 {
 await _dialogService.ShowMessageAsync(ex.Message);
 }}

When you run the application, you can send messages for all groups that have been joined and see received
messages for all registered groups, as shown in Figure BC3-5.

FIGURE BC3-5

ARCHITECTURE OF WEBHOOKS
WebHooks offer publish/subscribe functionality with web applications. That’s the only similarity
between WebHooks and SignalR. Otherwise, WebHooks and SignalR are very different and can take
advantage of each other. Before discussing how they can be used together, let’s get into an overview of
WebHooks.

With WebHooks, an SaaS (Software as a Service) service can call into your website. You just need to register
your site with the SaaS service. The SaaS service than calls your website (see Figure BC3-6). In your website,
the receiver controller receives all messages from WebHooks senders and forwards it to the corresponding
receiver. The receiver verifi es security to check whether the message is from the registered sender, and then it
forwards the message to the handler. The handler contains your custom code to process the request.

90 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

Dropbox

GitHub

WordPress

Your WYY ebsite

Dropbox
Receiver

Receiver
Controller

GitHub
Receiver

WordPress
Receiver

Handlers

FIGURE BC3-6

Contrary to the SignalR technology, the sender and receiver are not always connected. The receiver just
offers a service API that is invoked by the sender when needed. The receiver needs to be available on a public
Internet address.

The beauty of WebHooks is the ease of use on the receiver side and the support it receives from many SaaS
providers, such as Dropbox, Microsoft Azure, GitHub, WordPress, PayPal, Slack, SalesForce, and others.

Creating a sender is not as easy as creating a receiver, but there’s also great support with ASP.NET Core.
A sender needs a registration option for WebHook receivers, which is typically done using a Web UI. Of
course, you can also create a Web API instead to register programmatically. With the registration, the sender
receives a secret from the receiver together with the URL it needs to call into. This secret is verifi ed by the
receiver to only allow senders with this secret. As events occur with the sender, the sender fi res a WebHook,
which in reality involves invoking a web service of the receiver and passing (mostly) JSON information.

Microsoft’s ASP.NET Core NuGet packages for WebHooks make it easy to implement receivers for different
services by abstracting the differences. It’s also easy to create the ASP.NET Core Web API service that veri-
fi es the secrets sent by the senders and forward the calls to custom handlers.

To see the ease of use and the beauty of WebHooks, a sample application is shown to create Dropbox and
GitHub receivers. When creating multiple receivers, you see what’s different between the providers and
what functionality is offered by the NuGet packages. You can create a receiver to other SaaS providers in a
similar manner.

CREATING DROPBOX AND GITHUB RECEIVERS
To create and run the Dropbox and GitHub receiver example, you need both a GitHub and a Dropbox
account. With GitHub you need admin access to a repository. Of course, for learning WebHooks, it’s
fi ne to use just one of these technologies. What’s needed with all the receivers, no matter what service
you use, is for you to have a way to make your website publicly available—for example, by publishing to
Microsoft Azure.

Dropbox (http://www.dropbox.com) offers a fi le store in the cloud. You can save your fi les and directories
and share them with others. With WebHooks you can receive information about changes in your Dropbox
storage—for example, you can be notifi ed when fi les are added, modifi ed, and deleted.

GitHub (http://www.github.com) offers source code repositories. .NET Core and ASP.NET Core are
available in public repositories on GitHub, and so is the source code for this book (http://www.github
.com/ProfessionalCSharp/ProfessionalCSharp7). With the GitHub WebHook you can receive

Creating Dropbox and GitHub Receivers ❘ 91

information about push events or about all changes to the repository, such as forks, updates to Wiki pages,
issues, and more.

Creating a Web Application
Start by creating an ASP.NET Core Web Application named WebHooksReceiver. Select Web API with the
ASP.NET Core templates.

Next, add the NuGet packages Microsoft.AspNetCore.WebHooks.Receivers.Dropbox and Microsoft
.AspNetCore.WebHooks.Receivers.GitHub. These are the NuGet packages that support receiving mes-
sages from Dropbox and GitHub. With the NuGet package manager you’ll fi nd many more NuGet packages
that support other SaaS services.

Confi guring WebHooks for Dropbox and GitHub
You can create services for WebHooks like what you’ve seen when adding services in the previous chapters.
Just make sure you don’t add them to the IServiceCollection; add them to the result from the AddMvc
method instead. The methods AddDropboxWebHooks and AddGitHubWebHooks are extension methods
to IMvcBuilder, as they confi gure an ASP.NET Core MVC route and metadata that is used with the
action methods of the controllers. The singleton entry for the StorageQueueService is a service writ-
ing to Azure Storage that will be used from the implementation of the WebHook controllers (code fi le
WebHooksReceiver/Startup.cs):

public class Startup
{
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddMvc()
 .AddDropboxWebHooks()
 .AddGitHubWebHooks();

 services.AddSingleton<IStorageQueueService, StorageQueueService>();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 if (env.IsDevelopment)
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseMvc();
 }
}

To only allow messages from the defi ned SaaS services, secrets are used. You can confi gure these secrets
with the application settings. The key for the settings is predefi ned from the code in the NuGet packages.
For Dropbox, you use the key WebHooks:Dropbox:SecretKey:default, and for GitHub you use
MWebHooks:GitHub:SecretKey:default. A secret needs to be at least 15 characters long (confi guration
fi le WebHooksReceiver/appsettings.json):

{
 "WebHooks": {
 "GitHub": {
 "SecretKey": {
 "default": "tHisiStHesEcretkEyfOrgIthub"
 }
 },
 "Dropbox": {

92 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

 "SecretKey": {
 "default": "thIsisthEseCretkeYfoRdrOpbox"
 }
 }
 }
}

Implementing the Handler
The functionality of the WebHook is implemented in a controller with attributes for WebHooks. What can
be done in this handler? You can write the information to a database, to a fi le, to invoke other services, and
so on. Just be aware that the implementation shouldn’t take too long—just a few seconds. In cases where the
implementation takes too long, the sender might resend the request. For longer activities, it’s best to write
the information to a queue and work through the queue after the method is fi nished—for example, by using
a background process.

For the sample application receiving an event, a message is written into the Microsoft Azure Storage
queue. For using this queuing system, you need to create a Storage account at http://portal.azure
.com. With the sample application, the Storage account is named professionalcsharp. For using
Microsoft Azure Storage from ASP.NET Core, you can add the NuGet package WindowsAzure.Storage
to the project.

After creating the Azure Storage account, open the portal and copy the account name and primary access
key, and add this information to the confi guration fi le (code fi le WebHooksReceiver/appsettings.json):

{
 "ConnectionStrings": {
 "AzureStorageConnectionString":
 "Add your Azure Storage connection string"
 }
}

NOTE Pay attention to not save your secrets to a public source code repository. As
you’re developing, you can write your secrets to User Secrets as shown in Chapter 24,
“Security.” In production where you store the secrets depends on the technology used.
For example, with Microsoft Azure, you can use the Azure Key Vault to store your
secret and read it by using the confi guration provider Microsoft.Extensions
.Configuration.AzureKeyVault.

To send a message to the queue, you create the StorageQueueService. In the constructor, you inject the
IConfiguration interface for reading the confi guration from a confi guration provider. In the implementa-
tion of the StorageQueueService, the CloudStorageAccount is used to connect to the storage account.
From this account, the CloudQueueClient is used to access the queues in the storage account. Azure
Storage offers queue, table, and blob storage. The property QueueClient returns the CloudQueueClient.
With this client, a new queue is created (if it doesn’t already exist), and messages are sent to the queue (code
fi le WebHooksReceiver/Services/StorageQueueservice.cs):

public class StorageQueueService : IStorageQueueService
{
 private readonly IConfiguration _configuration;
 public StorageQueueService(IConfiguration configuration) =>
 _configuration = configuration;

 private CloudStorageAccount _storageAccount;
 public CloudStorageAccount StorageAccount =>
 _storageAccount ?? (_storageAccount =
 CloudStorageAccount.Parse(
 _configuration.GetConnectionString("AzureStorageConnectionString")));

Creating Dropbox and GitHub Receivers ❘ 93

 private CloudQueueClient _queueClient;
 public CloudQueueClient QueueClient =>
 _queueClient ?? (_queueClient =
 StorageAccount.CreateCloudQueueClient());

 public async Task WriteToQueueStorageAsync(string queueName, string message)
 {
 CloudQueue queue = QueueClient.GetQueueReference(queueName);
 await queue.CreateIfNotExistsAsync();
 await queue.AddMessageAsync(new CloudQueueMessage(message));
 }
}

Next, let’s get into the most important part of the WebHook implementation: the controllers for
the Dropbox and GitHub events. For making a Dropbox controller, all you need to do is to add a
DropboxWebHook attribute to an action method. The parameter with the JObject type contains the JSON
message from Dropbox. The DropboxWebHookAttribute class derives from WebHookAttribute. This attri-
bute offers the Id property, which you can use to defi ne different confi gurations. When you specify the Id
with the annotated action method, the action method only accepts messages for the specifi ed confi guration.
The sample code doesn’t supply the Id property, so every message received from Dropbox applies (code fi le
WebHooksReceiver/Controllers/DropboxController.cs):

public class DropboxController : Controller
{
 private readonly IStorageQueueService _storageQueueService;
 public DropboxController(IStorageQueueService storageQueueService)
 {
 _storageQueueService = storageQueueService;
 }

[DropboxWebHook()]
 public async Task<IActionResult> Dropbox(string id, JObject data)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 await _storageQueueService.WriteToQueueStorageAsync("dropbox",
 data.ToString());

 return Ok();
 }
}

With GitHub, the GitHubWebHook attribute defi nes some more properties. GitHub enables you to send
the data in the format of an HTTP request that uses Form data; you can confi gure this with the GitHub
website. The GitHubWebHook attribute can be confi gured to accept or not accept Form data using
the AcceptFormData property. You can also specify the EventName property, like it is done with the
GitHubPushHandler action method. This action method accepts only push events from GitHub (code fi le
WebHooksReceiver/Controllers/GitHubController.cs):

[GitHubWebHook(AcceptFormData = false, EventName = "push")]
public async Task<IActionResult> GitHubPushHandler(string id, JObject data)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 string message = $" id:{id}, push-event, data: {data.ToString()}";

94 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

 await _storageQueueService.WriteToQueueStorageAsync("github", message);

 return Ok();
}

The action method that accepts all the events from GitHub is the method GitHubHandler. This just
has the GitHubWebHook attribute applied without setting any property (code fi le WebHooksReceiver/
Controllers/GitHubController.cs):

[GitHubWebHook()]
public async Task<IActionResult> GitHubHandler(string id, string eventName,
 JObject data)
{
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }
 string message = $" id:{id}, event:{eventName}, data: {data.ToString()}";
 await _storageQueueService.WriteToQueueStorageAsync("github", message);

 return Ok();
}

To have a fallback method that is invoked when no other WebHook action method handler applies, you can
use the attribute GeneralWebHook (code fi le WebHooksReceiver/Controllers/GitHubController.cs):

[GeneralWebHook]
public async Task<IActionResult> FallbackHandler(string receiverName,
 string id, string eventName, JObject data)
{
 //...
}

With the implementation in a production scenario you can already read information from the JSON object
and react accordingly. However, remember that you should do the work within the handler within a few
seconds. Otherwise the service can resend the WebHook. This behavior is different based on the providers.

With the handlers implemented, you can build the project and publish the application to Microsoft Azure.
You can publish directly from the Solution Explorer in Visual Studio. Select the project, choose the Publish
context menu, and select a Microsoft Azure App Service target.

After publishing you can confi gure Dropbox and GitHub. For these confi gurations, the site already needs to
be publicly available.

Confi guring the Application with Dropbox and GitHub
To enable WebHooks with Dropbox, you need to create an app in the Dropbox App Console at https://
www.dropbox.com/developers/apps, as shown in Figure BC3-7.

To receive WebHooks from Dropbox, you need to register the public URI of your website. When you host
the site with Microsoft Azure, the host name is <hostname>.azurewebsites.net. The service of the
receiver listens at /api/webhooks/incoming/provider—for example, with Dropbox at https://
professionalcsharp.azurewebsites.net/api/webhooks/incoming/dropbox. In case you registered
more than one secret, other than the URIs of the other secrets, add the secret key to the URI, such as /api/
webhooks/incoming/dropbox/dropboxsecretkey1.

Creating Dropbox and GitHub Receivers ❘ 95

Dropbox verifi es a valid URI by sending a challenge that must be returned. You can try that out with
your receiver that is confi gured for Dropbox to access the URI hostname/api/webhooks/incoming/
dropbox/?challenge=12345, which should return the string 12345.

FIGURE BC3-7

To enable WebHooks with GitHub, open the Settings of a GitHub repository (see Figure BC3-8). There you
need to add a payload link, which is http://<hostname>/api/webhooks/incoming/github with this
project. Also, don’t forget to add the secret, which must be the same as defi ned in the confi guration fi le.
With the GitHub confi guration, you can select either application/json or Form-based application/x-
www-form-urlencoded content from GitHub. With the events, you can select to receive just push events, all
events, or select individual events.

96 ❘ BONUS CHAPTER 3 WEBHOOKS AND SIGNALR

FIGURE BC3-8

Running the Application
With the confi gured public web application, as you make changes to your Dropbox folder or changes in your
GitHub repository, you will fi nd new messages arriving in the Microsoft Azure Storage queue. From within
Visual Studio, you can directly access the queue using the Cloud Explorer. Selecting your storage account rr
within the Storage Accounts tree entry, you can see the Queues entry that shows all the generated queues.
When you open the queue, you can see messages like the one shown in Figure BC3-9.

Summary ❘ 97

FIGURE BC3-9

SUMMARY
This chapter described publish/subscribe mechanisms with web applications. You’ve seen the foundation of
WebSocket—creating a server and client app that stay connected.

With SignalR there’s an easy way to make use of the WebSocket technology that keeps a network connec-
tion open to allow passing information from the server to the client, offer abstractions to WebSockets, and
provide easy ways to return information to all clients or a specifi c group. You’ve seen how to create SignalR
hubs and communicate both from a JavaScript as well as a .NET client.

With SignalR’s support of groups, you’ve seen how the server can send information to a group of clients.

With the sample code you’ve seen how to chat between multiple clients using SignalR. Similarly, you can use
SignalR with many other scenarios—for example, if you have some information from devices that call Web
APIs with the server, you can inform connected clients with this information.

In the coverage of WebHooks you’ve seen another technology based on a publish/subscribe mechanism.
WebHooks is unlike SignalR in that it can be used only with receivers available with public Internet
addresses because the senders (typically SaaS services) publish information by calling web services. With
the features of WebHooks, you’ve seen that many SaaS services provide WebHooks, and it’s easy to create
receivers that receive information from these services.

To get WebHooks forwarded to clients that are behind the fi rewall, you can combine WebHooks with
SignalR. You just need to pass on WebHook information to connected SignalR clients.

The next bonus chapter introduces you to a new way of using application services: bots. You also learn
about using Microsoft Azure Cognitive services, which can be used from bots as well as other apps and
services.

