
Bonus Chapter 6:
C# 8 Updates

What's In This Chapter?

Nullable Reference Types

Null Coalescing Assignments

Default Interface Members

Async Streams

Switch Expressions and Pattern Matching

Indices and Ranges

Code Downloads for This Chapter
The code downloads for this chapter are found at

https://github.com/ProfessionalCSharp/Professional

CSharp7 in the CSharp8 folder. The code for this chapter is divided into

the following major examples:

▪ NullableSample

▪ UsingDeclarationSample

▪ ReadonlyMembersSample

▪ DefaultInterfaceMembersSample

▪ AsyncStreamsSample

▪ SwitchStateSample

▪ RangesSample

Language Improvements

C# is continuously evolving. C# 8 is released, and C# 9 is on the

way. Future proposals and meeting notes are discussed in the open – on

https://github.com/dotnet/csharplang.

C# 8 has many improvements to enhance productivity and reduce errors,

which is shown in this bonus chapter.

https://github.com/dotnet/csharplang

Enabling C# 8

C# 8 is the default version of the programming language creating

.NET Core 3.0/3.1 applications and .NET Standard 2.1 libraries. For other

application types, you need to enable it. With previous versions of Visual

Studio, it was possible to change the C# version with the Advanced Build

options in the project settings. This is no longer the case. Now you need to

change the project file (file extension .csproj).

There’s a good reason for this behavior change. With new C# versions so

far, there have been some issues with switching the compiler version. No

Microsoft does it in a way similar to other frameworks – there’s no

Microsoft support in using new C# versions with older frameworks. You

can still decide on your own to switch to new C# versions with older

framework versions you still need to support. However, not all the new

features are working everywhere. You will not have issues with features

that are just syntax sugar. Nonetheless, features that require a new runtime

do not work. Default interface members belong to this group. This feature

requires a change in the .NET runtime which is only implemented with

.NET Core 3.0 and above and is available only with .NET Standard 2.1

libraries. Other features are based on new types such as indices and ranges

require the Index and Range type to be available. Pay attention to where

you use the new C# version, and what features you use in case you change

the configuration to use C# 8 with older frameworks.

Project Settings

With a C# project file, you can directly specify the C# language

version:

<LangVersion>8.0</LangVersion>

Instead of specifying the specific language version, you can also define to

use the latest released C# version with the value latest, or the installed

preview version with the value preview.

Default Configurations

Instead of specifying the language version with every project, you

can also define the setting with the file Directory.Build.props.

This file is searched for in every base directory.

The following file (configuration file

CSharp8/Directory.Build.props) defines the 8.0 language

version as well as enabling the nullable C# 8 features for all the projects

found in directories within this directory:

<Project>

 <PropertyGroup>

 <LangVersion>8.0</LangVersion>

 <Nullable>enable</Nullable>

 </PropertyGroup>

</Project>

Enabling and Disabling Nullability

The C# 8 feature for nullable reference types is not enabled by

default. With existing projects, you can get a huge number of compilation

warnings, that’s why this setting is disabled by default. Another reason the

setting is not enabled by default is that you get all the advantages of this

feature is when the libraries are written with this feature enabled. A goal is

that all the major NuGet packages should have this feature enabled first,

and later on, this feature should be enabled by application creators.

However, with new applications, you can turn this feature already on

without big hassles. With existing applications, this feature can be turned

on as well, and you can get rid of the compiler warnings over time by

turning this feature on and off with different sections in the code.

To change nullable features in the code, you can use the nullable

preprocessor directive.

#nullable disable

Disables nullability. In case you’ve enabled nullability you can disable it in

the current file scope.

#nullable restore

 With #nullable restore, the setting is back as it was before, e.g.

with the project configuration.

#nullable enable

With #nullable enable, nullability is enabled, no matter how the

project is configured.

type="note"

Note

If you have a big number of compiler warnings because of nullability you
can turn nullability off with the project scope and turn it on from file to file

where you fix nullability using #nullable enable and #nullable

restore. If turning it on only leads to a small number of errors, leave it on

with the project settings, and turn it off with file scope as needed.

Nullability

Why is that buzz around nullability? What is this all about? It’s

probably the most important feature of C# 8: Nullable Reference Types.

With C# 7, you can assign null to any reference type. This is no longer the

case with C# 8 – if nullable reference types are enabled as shown in the

previous section. This change is a breaking change with existing code,

that’s why this feature needs to be explicitly enabled.

What’s the reason for this change? The number 1 exception with .NET

applications is the NullReferenceException – an exception

happening when members of a reference that is null is accessed. With .NET

guidelines, no applications should throw exceptions of type

NullReferenceException. Instead, if receiving parameters with null

values, a method should check for that and throw a

ArgumentNullException instead. The

ArgumentNullException exception has the advantage that the errors

are thrown where needed, not in some unexcepted behavior.

NullReferenceException exceptions are not that easy to detect.

type="warning"

Note

From the guidelines https://docs.microsoft.com/en-
us/dotnet/standard/design-guidelines/using-standard-exception-
types#nullreferenceexception-indexoutofrangeexception-and-
accessviolationexception: DO NOT allow publicly callable APIs to explicitly
or implicitly throw NullReferenceException,

AccessViolationException, or IndexOutOfRangeException.

These exceptions are reserved and thrown by the execution engine and in
most cases indicate a bug. Do argument checking to avoid throwing these
exceptions. Throwing these exceptions exposes implementation details of
your method that might change over time.

To avoid NullReferenceException, previous versions of C# already

introduced some features, such as the null coalescing operator, and the null

conditional operator (also known as null propagation operator). C# 8 goes

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/using-standard-exception-types#nullreferenceexception-indexoutofrangeexception-and-accessviolationexception
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/using-standard-exception-types#nullreferenceexception-indexoutofrangeexception-and-accessviolationexception
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/using-standard-exception-types#nullreferenceexception-indexoutofrangeexception-and-accessviolationexception
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/using-standard-exception-types#nullreferenceexception-indexoutofrangeexception-and-accessviolationexception

bit steps further. Enabling nullability, you cannot assign null to reference

types – only to reference types that are declared as nullable types.

type="reference"

Reference

The null coalescing and null conditional operators are covered in Chapter
6, “Operators and Casts.”

The new nullability is easy to understand. The syntax is similar to nullable

value types. Just like for value types, if the ? is not specified with the

declaration of the type, null is not allowed:

int i1 = 4; // null is not allowed

int? i2 = null; // null is allowed

string s1 = "a string"; // null is not allowed

string? s2 = null; // a nullable string

While the syntax with value types and reference types now looks similar,

the functionality behind the scenes is very different.

▪ With value types, the C# compiler makes use of the type

Nullable<T>. This type is a value type and adds a Boolean

field to define if the value type is null or non-null.

▪ With reference types, the C# compiler adds the Nullable

attribute. Version 8 of the compiler knows about this attribute

and behaves accordingly. C# 7 and older versions of C# do

not know about this attribute, and just ignore it.

Compiling a program with C# 8, both Book b and Book? b becomes

Book b with C# 7. With this, a library built with C# 8 can still be used

with C# 7. However, with a C# 7 compiler you do not get the advantages of

methods declared with nullability. Instead, you can pass null values where

null is not allowed, and best get an ArgumentNullException (if the

arguments are verified), or a NullReferenceException in other

cases.

Let’s get into an example. The following Book class defines the non-

nullable properties Isbn and Title, and the nullable property

Publisher. In addition to that, this type contains a constructor making

use of the C# 7 tuples as well as deconstruction implementing the

Deconstruct method. Using the Book type and accessing the Publisher

property, a value can only be written to a variable of type string?.

Assigning it to string results in the C# compilation warning “converting

null literal or possible null value to a non-nullable type” (code file

CSharp8/NullableSample/Book.cs):

public class Book

{

 public string Isbn { get; }

 public string Title { get ; }

 public string? Publisher { get; }

 public Book(string isbn, string title, string? publisher = default) =>

 (Isbn, Title, Publisher) = (isbn, title, publisher);

 public void Deconstruct(out string isbn, out string title,

 out string? publisher) =>

 (isbn, title, publisher) = (Isbn, Title, Publisher);

 public override string ToString() => Title;

}

Assigning Nullable to Non-Nullable

In case you need to assign a nullable type (like the Publisher

property from the Book type), the C# compiler analyzes the code. Directly

assigning a nullable value to a non-nullable value results in a compilation

error. Using the if statement to verify for not null, the compiler knows the

value is not null, and it can be assigned to the non-nullable type without

warning. Using the null coalescing operator is another option where a

value can be specified to assign to in case the expression on the left is null.

Of course, it’s also possible to assign a nullable to a nullable reference as

shown with the variable publisher4 (code file

CSharp8/NullableSample/Program.cs):

static void AssignNullableToNonNullable(Book b)

{

 // string publisher1 = b.Publisher; // compiler warning

 if (b.Publisher != null)

 {

 string publisher2 = b.Publisher; // ok

 }

 string publisher3 = b.Publisher ?? string.Empty;

 string? publisher4 = b.Publisher;

}

Invoking Methods

Before invoking a method (or accessing any member) of a nullable

reference type, you need to verify if the reference is not null. This can be

done by doing a check beforehand, or by using the null conditional

operator (code file CSharp8/NullableSample/Program.cs):

static void ShowBook(Book book)

{

 Console.WriteLine($"{book.Title.ToUpper()} {book.Publisher?.ToUpper()}");

}

Declaring Parameters and Return Types

To define if null should be allowed with a parameter, declare the

parameter type name with a question mark at the end. This allows to pass

null to this method. The method GetPublisher1 allows to pass null as a

parameter. With this the implementation should be fine with null and needs

to be implemented accordingly. In the code snippet, the book parameter is

checked with a null conditional operator, and an empty string is returned if

null is passed. If the book received is not null, the value of the Publisher

property is returned. If the Publisher property itself returns null, the null

conditional operator comes into play again, and an empty string is returned:

public string GetPublisher1(Book? book) => book?.Publisher ?? string.Empty;

To define that null can be returned, the ? is used with the return type. With

the method GetPublisher2, the Book parameter might not be null.

However, the Publisher property is declared to be nullable, and the method

GetPublisher2 can return null - or a publisher:

public string? GetPublisher2(Book book) => book.Publisher;

Initialization in the Constructor

Using nullability, some code changes may be necessary. For

example, to initialize a non-nullable member reference, a helper method

called from the constructor could be seen in existing code such as invoking

the RegisterServices method from within the constructor to assign

the Services property. The code as shown here results in this compiler

warning: “The non-nullable property Services is uninitialized. Consider

declaring the property as nullable.” (code file

CSharp8/NullableSample/ConstructorSample1.cs):

public class AppServicesLegacy

{

 public AppServicesLegacy()

 {

 RegisterServices();

 }

 public void RegisterServices()

 {

 var services = new ServiceCollection();

 //...

 Services = services.BuildServiceProvider();

 }

 public IServiceProvider Services { get; private set; }

}

Instead of declaring the Services property as a nullable type, a better

change would be to directly assign the Services property in the

constructor, and to return a reference from the RegisterServices

method. This way, the private set accessor can also be removed from the

Services property as it’s only assigned within the constructor (code file

CSharp8/NullableSample/ConstructorSample2.cs):

public class AppServices

{

 public AppServices()

 {

 Services = RegisterServices();

 }

 public IServiceProvider RegisterServices()

 {

 var services = new ServiceCollection();

 //...

 return services.BuildServiceProvider();

 }

 public IServiceProvider Services { get; }

}

Null Forgiving Operator

In case you need to override warnings by the compiler, e.g. where

the returned value is not null, but there are some reasons you can’t write the

code as needed, you can use the null forgiving operator.

type="note"

Note

Before the release of C# 8, the null forgiving operator was known as
dammit operator.

Let’s get into an example declaring a BooksContext for Entity

Framework Core. Here the BooksContext class derives from the class

DbContext, and defines a property Books of type DbSet<Book> for

mapping the Book type to the Books table. With the code as shown here,

and nullability enabled, you get a compiler warning Non-nullable property

Books is uninitialized. The initialization is done by the base class which is

not checked by the compiler. One way to deal with the compiler warning is

to declare the property of type DbSet<Book>?. This way it’s ok that this

property has a null value, and the compiler does not complain. However,

you need to verify for not null every time this property is used.

public class BooksContext : DbContext

{

 public BooksContext(DbContextOptions<BooksContext> options)

 : base(options)

 {

 }

 public DbSet<Book> Books { get; set; }

}

This can be resolved by assigning a value to the property on construction of

the object. Assigning null (using the default keyword), leads to another

issue because null cannot be assigned to non nullable references. Using !

(the null forgiving operator) you tell the compiler to ignore this issue and

allow this without complaining with a compiler warning (code file

CSharp8/NullableSample/BooksContext.cs):

public class BooksContext : DbContext

{

 public BooksContext(DbContextOptions<BooksContext> options)

 : base(options)

 {

 }

 public DbSet<Book> Books { get; set; } = default!;

}

Null Coalescing Assignments

Another feature related with nullability is null coalescing

assignments. Instead of first checking for null, and then assigning a value,

using the null coalescing assignment operator, this can be done at once.

Let’s have a look at an example with different implementations. In the first

example, the GetBook1 method checks if the variable _book is null

using the if statement. If the variable is null, a new instance is created and

assigned to the _book variable. Then the book is returned from the method

(code file NullableSampleApp/Program.cs):

private Book? _book;

public Book GetBook1()

{

 if (_book == null)

 {

 _book = new Book("4711", "Professional C# 9");

 }

 return _book;

}

With the next iteration, the same variable is used, but instead of using the if

statement, the null coalescing operator is used. If the result on the left side

is null, the right side is called where a new book is assigned to the _book

variable, and finally this value is returned (code file

NullableSampleApp/Program.cs):

private Book? _book;

public Book GetBook()

{

 return _book ?? (_book = new Book("4711", "Professional C# 9"));

}

The null coalescing operator is not new with C# 8, but the null coalescing

assignment operator is. Here, the check for null and the assignment of a

new object (if the result on the left side is null), is combined into the ??=

operator (code file NullableSampleApp/Program.cs):

private Book? _book;

public Book GetBook()

{

 return _book ??= new Book("4711", "Professional C# 9");

}

Small Features

Before getting into the some more big features of C# 8 let’s look into

some small and easy go grasp features that can still improve productivity.

Using declaration

C# 8 has a new feature for the using keyword. In this book, using

was already used as the using directive to open namespaces. The using

statement is used to free up resources by calling the Dispose method of

the IDisposable interface. C# 8 now gives us the using declaration.

The using declaration invokes the Dispose method like the using

statement but with a simplified syntax.

type="reference"

Reference

The using directive is covered in Chapter 2, “Core C#”. The using
statement is covered in detail in Chapter 17, “Managed and unmanaged
memory”.

First, let’s start with a class implementing IDiposable - the

AResource class (code file

CSharp8/UsingDeclarationSample/AResource.cs):

public class AResource : IDisposable

{

 private bool disposedValue;

 public void Use()

 {

 Console.WriteLine("use the resource");

 }

 protected virtual void Dispose(bool disposing)

 {

 if (!disposedValue)

 {

 if (disposing)

 {

 // TODO: dispose managed state (managed objects)

 }

 // TODO: free unmanaged resources (unmanaged objects)

 // and override finalizer

 // TODO: set large fields to null

 disposedValue = true;

 }

 }

 public void Dispose()

 {

 Dispose(disposing: true);

 GC.SuppressFinalize(this);

 }

}

Using this class with a traditional using statement creates try/finally code

and invokes the Dispose method at the end of the using block (code file

CSharp8/UsingDeclarationSample/Program.cs):

private static void UsingStatement()

{

 using (var r = new AResource())

 {

 r.Use();

 }

}

A new using declaration is started without using parentheses as with the

using statement and requires a variable. With the using statement a variable

is not necessary - you can for example invoke a method that returns an

IDiposable object, but do not assign it to a variable. With the using

declaration, a variable is required. The using declaration creates try/finally

code and invokes the Dispose method at the end of the scope of the

variable. Here, the scope of the variable is the method, thus the resource is

disposed at the end of the method (code file

CSharp8/UsingDeclarationSample/Program.cs):

private static void UsingDeclaration()

{

 using var r = new AResource();

 r.Use();

}

The using declaration reduces indentation. This comes very practical when

multiple resources need to be disposed.

In case you need to create a shorter scope for disposal before the end of the

method, curly brackets can be used to define a shorter lifetime scope for the

variable.

Pattern-based using

Another feature of C# 8 is pattern-based using. A ref struct cannot

implement interfaces. In this case, just the Dispose method is enough to

use this type with the using declaration or the using statement. For all other

types it’s still necessary to implement the interface IDiposable.

type="reference"

Reference

The ref struct is explained in Chapter 17, “Managed and Unmanaged
Memory.”

The following code snippet demonstrates a ref struct implementing the

Dispose method - which is enough for this type to be used with a using

declaration (code file

UsingDeclarationSample/ARefStructResource.cs):

public ref struct ARefStructResource

{

 public void Foo() => Console.WriteLine("Foo");

 public void Dispose()

 {

 Console.WriteLine($"ARefStructResource:Dipose");

 }

}

Static local functions

Local functions (functions within a method, property accessor, event

accessor…) can now be declared with the static modifier. This way it’s

made sure that the local function cannot access any instance member or any

variable in the scope of the method - outside of the local function. The

compiler can also optimize the code because initialization is not needed.

type="reference"

Reference

Local functions are explained in Chapter 13, “Functional Programming
with C#.”

The following sample shows a local function as implemented in an

extension class. Here, a local function is used to throw the

ArgumentNullException when the Where1 method is invoked from

the calling code, and not at a later time when the iteration is done (e.g.

using a foreach loop). The local function with the name Iterator is

defined within the Where1 method and can only be used within the scope

of this method. The Iterator local function accesses variables outside of

this function, such as the source and the pred variable. This is not

allowed in a static local function (code file

StaticLocalFunctionsSample/CollectionExtensions.cs)

:

public static IEnumerable<T> Where1<T>(

 this IEnumerable<T> source, Func<T, bool> pred)

{

 if (source == null) throw new ArgumentNullException(nameof(source));

 if (pred == null) throw new ArgumentNullException(nameof(pred));

 return Iterator();

 IEnumerable<T> Iterator()

 {

 foreach (T item in source)

 {

 if (pred(item))

 yield return item;

 }

 }

}

The local function can be changed to be declared as a static local

function. To not access variables outside of its scope, parameters are

defined to be passed when invoking this local function (code file

StaticLocalFunctionsSample/CollectionExtensions.cs)

:

public static IEnumerable<T> Where2<T>(

 this IEnumerable<T> source, Func<T, bool> pred)

{

 if (source == null) throw new ArgumentNullException(nameof(source));

 if (pred == null) throw new ArgumentNullException(nameof(pred));

 return Iterator(source, pred);

 static IEnumerable<T> Iterator(IEnumerable<T> source, Func<T, bool> pred)

 {

 foreach (T item in source)

 {

 if (pred(item))

 yield return item;

 }

 }

}

Readonly Members

Members of structs can now be declared with the readonly

modifier. With C# 7 it is possible to declare the complete struct with a

readonly modifier to make sure no field changes after creation. A

readonly struct can only contain readonly fields and read-only

properties. Using the readonly modifier with members of the struct is

not that restrictive - the members that don’t mutate state can be marked

with the readonly modifier.

With the following code sample, the struct SomeData is defined. With this

structure, GetDataX methods and the DontChangeState method are

declared readonly. These methods do not change the state of the struct.

These methods return fields and properties. Calling methods within

readonly methods, these methods need to be declared readonly as

well. Accessing properties from readonly methods you need to be aware

that the get accessor is not automatically assumed to be read-only. The

get accessor could change some state, so you need to modify it with the

readonly modifier as well as shown with Data3. This is not necessary

with auto implemented properties. Here the syntax is known to now change

state with the get accessor - so with auto implemented properties the

readonly accessor is not needed as shown with Data4 and Data5

properties (code file

CSharp8/ReadOnlyMembersSampe/Program.cs):

public struct SomeData

{

 private readonly int _data1;

 private int _data2;

 public SomeData(int data1, int data2, int data3, int data4, int data5)

 {

 _data1 = data1;

 _data2 = data2;

 _data3 = data3;

 Data4 = data4;

 Data5 = data5;

 }

 private int _data3;

 public int Data3

 {

 readonly get => _data3;

 set => _data3 = value;

 }

 public int Data4 { get; set; }

 public int Data5 { get; }

 private void PrivateMethod() // not declared readonly

 {

 Console.WriteLine("PrivateMethod");

 }

 public readonly int GetData1() => _data1;

 public readonly int GetData2() => _data2;

 public readonly int GetData3() => Data3;

 public readonly int GetData4() => Data4;

 public readonly int GetData5() => Data5;

 public readonly void DontChangeState()

 {

 Console.WriteLine("DontChangeState");

 // PrivateMethod(); - cannot be invoked because this method is not readonly

 }

}

type="note"

Note

Be aware of the different way auto created properties and full properties
are dealt with. The get accessor of auto created properties is

automatically read-only while the get accessor of custom implemented
properties needs to be declared with the readonly modifier.

Interpolated Verbatim Strings

A small but useful feature is an enhancement of interpolated

verbatim strings. A verbatim string starts with the @ token - to ignore the

special characters in the string which is useful for example with regular

expressions to not need to escape every special character. An interpolated

string starts with the $ token - to allow computed expressions within the

string within curly braces. In case both is needed with a string, interpolated

and verbatim strings, before C# 8 the order was important - you had to

write $@"…" - the $ token had to be before the @ token. Now this

limitation is removed, now you can also use @$"…".

type="reference"

Reference

Interpolated and verbatim strings are discussed in Chapter 9, "Strings
and Regular Expressions".

Default Interface Members

One of the most controversial C# 8 features is default interface

members. With this feature, interfaces can include implementations. This

is a major change from before and requires changes with the runtime.

Because of this, this feature is not available with the .NET Framework and

requires at least .NET Core 3.0 and .NET Standard 2.1.

The major reason for this feature is versioning of interfaces. Before C# 8,

any time you change an interface is a breaking change. Both callers and

implementors need to be re-compiled, and implementors of an interface

need to change the implementation to add new members of the interface. If

you define interfaces only in your own projects with strong dependencies,

this might not be an issue for you. However, if you create a library used by

others, changing the interface means that any previously defined class that

implements the interface no longer compiles.

type="note"

Note

Because of this versioning issue with interfaces, many implementations of
.NET libraries derive from abstract classes instead of implementing
interfaces. With new versions, abstract classes can be enhanced (if no
abstract methods are added) without breaking derived classes.

Versioning of Interfaces

Let’s get into an example. The interfaces IPosition and IShape

are defined in the .NET Standard 2.1 library SampleLib:

public interface IPosition

{

 int X { get; set; }

 int Y { get; set; }

}

public interface IShape

{

 IPosition Position { get; set; }

}

These interfaces are implemented in the application

DefaultInterfaceMemberSample (code file
DefaultInterfaceMembersSample/DefaultInterfaceMemb

erSample/Program.cs):

public class Position : IPosition

{

 public int X { get; set; }

 public int Y { get; set; }

}

public class Shape : IShape

{

 private IPosition _position = new Position();

 public IPosition Position

 {

 get => _position;

 set => _position = value;

 }

 public override string ToString() => $"X: {Position.X}, Y: {Position.Y}";

}

Now, if one interface is changed with another member in a new version of

the library, you can receive a compiler error. For example, if the library

developer adds the Move method to IShape, rebuilding the application

referencing the library results in the compiler error Shape does not

implement interface member ‘IShape.Move(IPosition)’.

public interface IShape

{

 IPosition Position { get; set; }

 IPosition Move(IPosition newPosition);

}

Creating a default interface member instead – declaring the method and

adding an implementation – the versioning issue can be solved. Adding a

method with an implementation doesn’t break versioning. The application

using this library can be rebuilt using the new version of the library without

changes (code file

DefaultInterfaceMembersSample/SampleLib/IShape.cs):

public interface IShape

{

 IPosition Position { get; set; }

 public IPosition Move(IPosition newPosition)

 {

 Position.X = newPosition.X;

 Position.Y = newPosition.Y;

 return Position;

 }

}

Enhancing the calling app with new features, the Move method can be

accessed by using the interface, e.g. by declaring the interface type as a

method parameter, or by casting the object to the interface (code file
DefaultInterfaceMembersSample/DefaultInterfaceMemb

erSample/Program.cs):

static void Move(IShape shape)

{

 shape.Move(new Position() { X = 99, Y = 99 });

}

static void Main()

{

 var shape = new Shape();

 shape.Position = new Position { X = 33, Y = 22 };

 Console.WriteLine(shape);

 (shape as IShape).Move(new Position { X = 44, Y = 33 });

 Move(shape);

 Console.WriteLine(shape);

}

As soon as you implement the default interface method in the derived class,

this version is used – no matter if you use the variable as a type of the class

or the interface. However, if you implement the method in the derived class

you cannot call the default implementation from the interface anymore.

Using the base keyword to invoke members from the interface is not

possible – at least not with C# 8.

type="note"

Note

Invoking implementations of base interfaces was removed during the
process creating default interface members from C# 8 but is planned for a
future C# major version. See C# meeting notes
https://github.com/dotnet/csharplang/blob/master/meetin

gs/2019/LDM-2019-04-29.md#default-interface-

implementations-and-base-calls

Trait

A trait is a concept which allows defining a set of methods to extend

the functionality of a class. Some programming languages have a specific

keyword for traits (e.g. PHP and Scala with the trait keyword, Ruby

with mixins). C# now allows some functionality of traits with default

interface members.

With C#, many extensions to different types are done with extension

methods. Extension methods sometimes are hard to detect, as the

namespace where the extension class is defined needs to be added. Similar

functionality can be done using default interface members as show next.

type="note"

Note

Extension methods are covered in detail in Chapter 3, “Objects and
Types”.

Many LINQ methods are implemented as extension methods to extend the

IEnumerable<T> interface. Let’s have a look at using default interface

members instead. Because we don’t have control on the

IEnumerable<T> interface, the sample code defines the

ICustomEnumerable<T> interface that just derives from

IEnumerable<T>. The interface ICustomEnumerable<T> is

created to define the Where trait to be used later instead of the Where

https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-04-29.md#default-interface-implementations-and-base-calls
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-04-29.md#default-interface-implementations-and-base-calls
https://github.com/dotnet/csharplang/blob/master/meetings/2019/LDM-2019-04-29.md#default-interface-implementations-and-base-calls

implementation that is implemented as an extension method in the

Enumerable class. The ICustomEnumerable<T> interface defines

an implementation of the Where method to filter elements based on the

passed predicate (code file
CSharp8/DefaultInterfaceMemberSample/SampleLib/ICu

stomEnumerable.cs):

public interface ICustomEnumerable<T> : IEnumerable<T>

{

 public IEnumerable<T> Where(Func<T, bool> pred)

 {

 foreach (T item in this)

 {

 if (pred(item))

 {

 yield return item;

 }

 }

 }

}

For using the interface with a collection, the class

CustomCollection<T> is defined. This class derives from the

Collection<T> base class (in the namespace

System.Collections.ObjectModel) and implements the interface

ICustomEnumerable<T>. Because ICustomEnumerable<T>

doesn’t define any additional members to IEnumerable<T> that need to

be implemented, and Collection<T> already implements

IEnumerable<T>, the implementation of this class can be kept simple

(code file
CSharp8/DefaultInterfaceMembersSample/CustomCollec

tion.cs):

public class CustomCollection<T> : Collection<T>, ICustomEnumerable<T>

{

}

Next, the collection is used. The GetCustomCollection method

returns a new instance passing some initial values. The method

CustomCollectionSample demonstrates using the Where method

both with the LINQ method syntax as well as the LINQ expression.

Because there’s a better match with the ICustomEnumerable<T>

interface, the default interface members of the interface are used instead of

the extension methods that extend the IEnumerable<T> interface (code

file

CSharp8/DefaultInterfaceMembersSample/Program.cs):

private static ICustomEnumerable<string> GetCustomCollection() =>

 new CustomCollection<string>

 { "James", "John", "Michael", "Lewis", "Jochen", "Juan" };

private static void CustomCollectionSample()

{

 var coll = GetCustomCollection();

 var subset = coll.Where(n => n.StartsWith("J"));

 foreach (var name in subset)

 {

 Console.WriteLine(name);

 }

 var subset2 = from n in coll

 where n.StartsWith("J")

 select n;

 foreach (var name in subset2)

 {

 Console.WriteLine(name);

 }

}

Multiple Inheritance

One way looking at default interface members is multiple

inheritance. You cannot derive a class from multiple classes, but derivation

from multiple interfaces is possible. Now as we can have implementations

with interfaces, does this solve the problem of the FlyingCarpet class

to derive both from FlyingObject and Carpet? The

CustomCollection<T> class shown in the previous example derives

from the class Collection<T>. There’s also inheritance declaration

from the interface ICustomEnumerable<T> to inherit the Where

method. However, there’s an important restriction. With default interface

members you can declare methods with the interface, but you cannot keep

any state. Declaring fields is not possible. It’s possible to declare properties,

but not fields associated with properties. This restriction doesn’t allow

using auto properties in interfaces.

What this restriction prohibits and what can be done around it is shown in a

sample creating a base implementation for the interface

INotifyPropertyChanged. This interface is used for change

notification, e.g. when properties of an object change to automatically

update user interfaces.

type="reference"

Reference

See Chapter 34, “Patterns with XAML Apps” on more information on
change notification with INotifyPropertyChanged.

The interface INotifyPropertyChanged (in the namespace

System.ComponentModel) defines the event PropertyChanged

that needs to be implemented by the class deriving from this interface:

public interface INotifyPropertyChanged

{

 event PropertyChangedEventHandler PropertyChanged;

}

Instead of creating a class implementing this interface, let’s create the

interface IBindableBase deriving from

INotifyPropertyChanged. What’s not possible with this interface is

to implement the event from the base interface – this would keep state. This

interface implements the method SetProperty which can be used by the

class implementing this interface. However, the method

OnPropertyChanged is declared, which needs to be implemented by

the type implementing this interface. It’s not possible to define a field for a

delegate (using the event syntax) and fire the event directly from the

interface (code file

DefaultInterfaceMembersSample/IBindableBase.cs):

public interface IBindableBase : INotifyPropertyChanged

{

 void OnPropertyChanged(string propertyName);

 public virtual bool SetProperty<T>(

 ref T item, T value,

 [CallerMemberName] string propertyName = default!)

 {

 if (EqualityComparer<T>.Default.Equals(item, value)) return false;

 item = value;

 OnPropertyChanged(propertyName);

 return true;

 }

}

As entity types now do not need to derive from a common base class such

as a BindableBase, other base classes can be used. Here, the Entity

class is defined to specify an Id property (code file

DefaultInterfaceMembersSample/Entity.cs):

public class Entity

{

 public int Id { get; set; }

}

The Book class now inherits the members from both the Entity class as

well as the IBindableBase interface. Because IBindableBase

derives from INotifyPropertyChanged, the Book class also needs to

implement the members from this base interface – which is the

PropertyChanged event. As defined by the IBindableBase

interface, the Book class also implements the OnPropertyChanged

method. In this implementation, the PropertyChanged event is fired.

With the implementation of the set accessor of the Title property, the

SetProperty of the base interface is invoked, which in turn invokes the

OnPropertyChanged method (code file

CSharp8/DefaultInterfaceMembersSample/Book.cs):

public class Book : Entity, IBindableBase

{

 public event PropertyChangedEventHandler PropertyChanged = (s, e) => { };

 void IBindableBase.OnPropertyChanged(string propertyName) =>

 PropertyChanged.Invoke(this, new PropertyChangedEventArgs(propertyName));

 private string? _title;

 public string? Title

 {

 get => _title;

 set => (this as IBindableBase).SetProperty(ref _title, value);

 }

}

type="note"

Note

You need to be aware of the restriction with default interface members -
you cannot define state with the interface. If you need state, use abstract
base classes instead. In most scenarios, having an abstract base class
implementing INotifyPropertyChanged is the easier scenario to work

with – the implementation of the model types gets simpler.

Async Streams

One of the many great features of C# 8 is async streams. Before C#

8, you could use the await keyword only to get a single result – when the

asynchronous method returns the result. This changed with C# 8. Using

await it's now possible to get a stream of results. Result by result is

returned asynchronously. This was made possible by defining

asynchronous iterator interfaces, and updates to the foreach and the

yield statements.

type="reference"

Reference

The foreach statement is covered in Chapter 2, “Core C#”. The

IEnumerator, IEnumerable interfaces, and the yield statement are

covered in Chapter 7, “Arrays”. The task-based async pattern with the
await keyword is covered in Chapter 15, “Asynchronous Programming.”

Asynchronous Interfaces

The new interfaces defined for async streams are

IAsyncEnumerable<T>, IAsyncEnumerator<T>, and

IAsyncDisposable.

The interface IAsyncEnumerable<T> looks like IEnumerable<T>

with the exception that an IAsyncEnumerator<T> is returned instead

of IEnumerator<T>:

public interface IAsyncEnumerable<[Nullable(2)] out T>

{

 IAsyncEnumerator<T> GetAsyncEnumerator(

 CancellationToken cancellationToken = default);

}

The interface IEnumerator<T> defines a Current property and a

MoveNext method. This is like IAsyncEnumerator<T>. With the

interface IAsyncEnumerator<T>, the MoveNextAsync method

returns a ValueTask<bool>. A value of true is returned if the next

object is retrieved, false if it’s the end of the collection:

public interface IAsyncEnumerator<[Nullable(2)] out T> : IAsyncDisposable

{

 T Current { get; }

 ValueTask<bool> MoveNextAsync();

}

An enumerator also needs to be disposed – asynchronously. For this the

interface IAsyncDisposable with the method DisposeAsync is

defined:

public interface IAsyncDisposable

{

 ValueTask DisposeAsync();

}

type="note"

Note

Using the await statement is possible with any object offering the

method GetAwaiter. Besides the Task class, the ValueTask struct

implements the GetAwaiter method. The ValueTask struct is discussed

in Chapter 21, “Tasks and Parallel Programming.”

Using yield with Async Streams

With the sample application for async streams a device is simulated

that returns two random values after a random time. The data returned from

the device is implemented in the class SensorData. This is a simple type

with two read-only properties (code file

CSharp8/AsyncStreamsSample/SensorData.cs):

public struct SensorData

{

 public SensorData(int value1, int value2)

 => (Value1, Value2) = (value1, value2);

 public int Value1 { get; }

 public int Value2 { get; }

}

The ADevice class utilizes the interface IAsyncEnumerable<T> in

returned results by using the yield statement. yield was changed with

C# 8 to not only implement synchronous iterators with the

IEnumerable<T> and IEnumerator<T> interfaces, but also the

IAsyncEnumerable<T> and IAsyncEnumerator<T> interfaces. In

the method GetSensorData1, the yield statement is used to return

sensor data with random values after a random time in an endless loop

(code file CSharp8/AsyncStreamsSample/ADevice.cs):

public class ADevice

{

 public async IAsyncEnumerable<SensorData> GetSensorData1()

 {

 var r = new Random();

 while (true)

 {

 await Task.Delay(r.Next(300));

 yield return new SensorData(r.Next(100), r.Next(100));

 }

 }

}

type="reference"

Reference

The yield statement is explained in Chapter 12, “Language Integrated
Query.”

type="note"

Note

The design team considered to not derive IAsyncEnumerator<T> from

IAsyncDisposable. However, that design would complicate other parts,

e.g. with pattern-based helpers that need to deal with different scenarios.

type="note"

Note

The interfaces IAsyncDisposable and IAsyncEnumerator return

ValueTask with the methods MoveNextAsync and DisposeAsync. C#

7 was changed to allow awaits not only on the Task type, but instead with

any type implementing the GetAwaiter method.

ValueTask is one of the types that can be used here. ValueTask is

implemented as a value type instead of a reference type with the Task.

With this, ValueTask doesn't have the overhead of an object in the

managed heap. This can be useful iterating through a list where not every
iteration really requires an asynchronous operation.

Using foreach

Next, let's iterate the asynchronous stream. The foreach statement

has been extended with asynchronous functionality – making use of the

asynchronous interfaces when the await keyword is used. With await

foreach, one item is retrieved after the other – without blocking the

calling thread (code file

CSharp8/AsyncStreamsSample/Program.cs):

private static async Task UseEnumeratorAsync()

{

 var aDevice = new ADevice();

 await foreach (var x in aDevice.GetSensorData1())

 {

 Console.WriteLine($"{x.Value1} {x.Value2}");

 }

}

type="note"

Note

To run the application, you have to uncomment the invocation of
UseEnumeratorAsync and the other methods using the enumerator in

the Main method. UseEnumeratorAsync runs endlessly, so you need to

stop the application run with CTRL+C.

Behind the scenes, the compiler translates the async foreach statement

to a while loop, invocation of the MoveNextAsync method, and

accessing the Current property. The enumerator is disposed with the

async version of the using declaration. await using can be used with

the IAsyncDisposable interface (code file

CSharp8/AsyncStreamsSample/Program.cs):

private static async Task WhileLoopAsync()

{

 var aDevice = new ADevice();

 IAsyncEnumerable<SensorData> en = aDevice.GetSensorData1();

 await using IAsyncEnumerator<SensorData> enumerator =

 en.GetAsyncEnumerator();

 while (await enumerator.MoveNextAsync())

 {

 var sensorData = enumerator.Current;

 Console.WriteLine($"{sensorData.Value1} {sensorData.Value2}");

 }

}

Cancellation

Creating a custom implementation of the

IAsyncEnumerator<T> interface, to allow for cancellation, a

CancellationToken parameter can be specified. The parameter is

optional by supplying a default value and marked with the

EnumeratorCancellation attribute. This way, either a cancellation

token can be passed to the GetSensorData2 method, or the cancellation

token can be supplied in a different way invoking the

WithCancellation method as shown next. The

CancellationToken is passed along to the Task.Delay method – so

this method is cancelled if the token tells so (code file

CSharp8/AsyncStreamsSample/SensorData.cs):

public async IAsyncEnumerable<SensorData> GetSensorData2(

 [EnumeratorCancellation] CancellationToken cancellationToken = default)

{

 var r = new Random();

 while (true)

 {

 await Task.Delay(r.Next(500), cancellationToken);

 yield return new SensorData(r.Next(100), r.Next(100));

 }

}

type="reference"

Reference

The cancellation token is explained in detail in Chapter 21, “Tasks and
Parallel Programming.”

Invoking the method GetSensorData2, in the code sample the

cancellation token is not directly passed to this method (which is possible

as well), but instead using the WithCancellation extension method.

The sample code sends a cancellation after 5 seconds. When cancellation

happens, an OperationCanceledException is thrown which is

caught in the calling code (code file

CSharp8/AsyncStreamsSample/Program.cs):

private static async Task WithCancellationAsync()

{

 try

 {

 var cts = new CancellationTokenSource();

 cts.CancelAfter(5000);

 var aDevice = new ADevice();

 await foreach (var x in aDevice.GetSensorData2()

 .WithCancellation(cts.Token)

 {

 Console.WriteLine($"{x.Value1} {x.Value2}");

 }

 }

 catch (OperationCanceledException ex)

 {

 Console.WriteLine(ex.Message);

 }

}

type="note"

Note

Since .NET Framework 4.0, .NET included the IObserver<T> and

IObservable<T> interfaces. Reactive Extensions makes use of these

interfaces. How does this compare to the new interfaces defined for async
streams? With the IObservable<T> interface, the Subscribe method

can be used to assign a subscriber and receive events. This explains the
major difference between this model and the new async streams.
Observables uses a push-based model, the sender is in control. The
subscriber receives events when new items are available. With async
streams, a pull-based model is used. The caller is in control when doing
the next invocation of the GetNextAsync method and waits here to

receive the result. Because of the async implementation, the caller
continues only when the result is received, but the calling thread is not
blocked and can continue other work.

Switch Expressions and Pattern
Matching

The switch statement is already available since C# 1.0 and it's not a

lot different to what was known from the C programming language (there's

a small difference). Now as we have Lambda expressions, it's time to

simplify the switch functionality with the switch expression. This section

also discusses enhancements with pattern matching that are very practical

to use with the switch expression.

While the switch expression offers more readability compared to the switch

statement (as soon as you are used to the lambda expressions), there’s still a

reason when to use the switch statement: the switch expression always

returns a value. The switch statement can be used to invoke different

actions without returning a value.

type="reference"

Reference

The switch statement is explained in Chapter 2, "Core C#", Pattern
matching is covered in Chapter 13, "Functional Programming with C#."

Let's start with an existing sample from the book changing a switch

statement to a switch expression. The class BookTemplateSelector is

used in an UWP application to return a data template for the user interface

depending on the value of a property. The SelectTemplate method is

invoked for every item in a list to return either a template assigned to the

WroxBookTemplate, or a WileyBookTemplate, or the

DefaultBookTemplate. Here, the switch statement is used to decide

on the Publisher property. Multiple case and break keywords are

used to return the correct template:

public class BookTemplateSelector : DataTemplateSelector

{

 public DataTemplate DefaultBookTemplate { get; set; }

 public DataTemplate WroxBookTemplate { get; set; }

 public DataTemplate WileyBookTemplate { get; set; }

 public override DataTemplate SelectTemplate(object item,

 DependencyObject container)

 {

 var book = item as Book;

 if (book == null) return null;

 DataTemplate selectedTemplate = null;

 switch (book.Publisher)

 {

 case "Wrox Press":

 selectedTemplate = WroxBookTemplate;

 break;

 case "Wiley":

 selectedTemplate = WileyBookTemplate;

 break;

 default:

 selectedTemplate = DefaultBookTemplate;

 break;

 }

 return selectedTemplate;

 }

}

C# 7 already allows a small simplification on the method

SelectTemplate with pattern matching. Instead of using the as

operator to verify if the object item is a book, the is operator together with

the type pattern checks for a Book type and assigns the item variable to the

book variable – if the item is a Book:

public override DataTemplate SelectTemplate(object item,

 DependencyObject container)

{

 if (item is Book book)

 {

 DataTemplate selectedTemplate = null;

 switch (book.Publisher)

 {

 case "Wrox Press":

 selectedTemplate = WroxBookTemplate;

 break;

 case "Wiley":

 selectedTemplate = WileyBookTemplate;

 break;

 default:

 selectedTemplate = DefaultBookTemplate;

 break;

 }

 return selectedTemplate;

 }

 else

 {

 return null;

 }

 }

Another enhancement – still using the old switch statement – can be done

with pattern matching and C# 7. Here, the switch is done on the item

object itself, and patterns are used with the cases. Pattern matching is

enhanced with the when clause. The first case checks for a Book with the

type pattern and uses the when clause to verify if the Publisher

property has the string value "Wrox Press". With the third case, the

variable of the book is not needed, thus assigned to a variable with the

name _. Nowadays this variable name has a special meaning with some

expressions to ignore it:

public override DataTemplate SelectTemplate(object item,

 DependencyObject container)

{

 DataTemplate selectedTemplate = null;

 switch (item)

 {

 case Book b when b.Publisher == "Wrox Press":

 selectedTemplate = WroxBookTemplate;

 break;

 case Book b when b.Publisher == "Wiley":

 selectedTemplate = WileyBookTemplate;

 break;

 case Book _:

 selectedTemplate = DefaultBookTemplate;

 break;

 default:

 selectedTemplate = null;

 break;

 }

 return selectedTemplate;

}

Next let's change this to the C# 8 switch expression with nullability

enhancements as well. The complete class becomes a lot smaller. With the

new switch expression, using the keyword and the expression are reversed.

Instead of switch (item), now item switch introduces the switch

expression. The case and break keywords are no longer needed. Instead, the

lambda operator => has the case on the left side and the implementation on

the right side. With the first case, a type pattern is used to check for the

Book type. With pattern matching a new feature is to use recursive

patterns. After one pattern matches, another is used to check for the next

pattern. Using curly braces, the property pattern is introduced to check for

the value of the Publisher property – to return the corresponding

template. To make the switch expression exhaustive, to have cases for all

scenarios, the _ pattern is used to fulfill every other case:

public class BookTemplateSelector : DataTemplateSelector

{

 public DataTemplate? DefaultBookTemplate { get; set; }

 public DataTemplate? WroxBookTemplate { get; set; }

 public DataTemplate? WileyBookTemplate { get; set; }

 public override DataTemplate? SelectTemplate(object item,

 DependencyObject container) =>

 item switch

 {

 Book { Publisher: "Wrox Press" } => WroxBookTemplate,

 Book { Publisher: "Wiley" } => WileyBookTemplate,

 Book _ => DefaultBookTemplate,

 _ => null

 };

}

type="note"

Note

The switch expression has some restrictions compared to the switch
statement. You might still need to use the switch statement in some cases.
The switch expression always needs to return a value. With the switch
statement you can do an action in every case and not return a value. This
is not possible with the switch expression. Another restriction with the
switch expression is that in the implementation of a case only one
expression can be used. You cannot use curly braces to write multiple
lines of code. Of course, you can invoke a method that returns a value.

Here, local functions come in handy when you need the implementation
only with the switch.

State changes with the switch expression

Let's get into another sample to see the features of the switch

expression – with states of a traffic light. First, states are defined with the

enum keyword - Red, Yellow, and Green:

public enum LightState

{

 Undefined,

 Red,

 Yellow,

 Green,

};

This is a very simple scenario. Changing from one light to the other, just

the cases can be used to return a new state based on the current state. If the

light is red, yellow is returned. If the light is yellow, green is returned:

public LightState GetNextLight1(LightState currentLight) =>

 currentLight switch

 {

 LightState.Red => LightState.Yellow,

 LightState.Yellow => LightState.Green,

 LightState.Green => LightState.Red,

 _ => LightState.Undefined

 };

Adding a static using to open the LightState, the implementation can

even be simplified:

using static SwitchSample.LightState;

Now just the values of the enum can be used - which can enhance

readability (code file

CSharp8/SwitchStateSample/TrafficLightSwitcher.cs):

public LightState GetNextLight1(LightState currentLight) =>

 currentLight switch

 {

 Red => Yellow,

 Yellow => Green,

 Green => Red,

 _ => Undefined

 };

The TrafficLightRunner repeats invocations of the

GetNextLight1 method after a delay. The light switches from one state

to the next (code file

CSharp8/SwitchStateSample/TrafficLightRunner.cs):

public class TrafficLightRunner

{

 private readonly TrafficLightSwitcher _switcher = new TrafficLightSwitcher();

 public async Task SimpleLigthAsync()

 {

 LightState current = LightState.Red;

 while (true)

 {

 current = _switcher.GetNextLight1(current);

 Console.WriteLine($"new light: {current}");

 await Task.Delay(2000);

 }

 }

 //...

}

type="note"

Note

Starting the application, you need to pass command-line arguments like -

-mode=Simple to run it with the different options. This application makes

use of the NuGet package System.CommandLine.Experimental to

read and behave differently based on the passed command line.

Using tuples with switch expressions

For quite simple scenarios, the switch expression can be used to

change from one state to the next. However, the traffic light is not really

that simple. The light switches from yellow to either red or green,

depending what the previous state was: read - yellow - green - yellow - red.

The traffic light is also more complex. Depending on the country of the

traffic light, the green light can flash multiple times before switching to

yellow. There's also a flashing yellow state, so the LightState enum

type is changed to cover the different options (code file

CSharp8/SwitchStateSample/LightState.cs):

public enum LightState

{

 Undefined,

 Red,

 Yellow,

 FlashingGreen,

 Green,

 FlashingYellow

};

With a new version of the light switching method, GetNextLight2, this

all is paid attention to. To use a combination of the current and previous

light what's needed to decide the next switch after yellow, a tuple comes in

handy.

type="reference"

Reference

Tuples are discussed in detail in Chapter 13, "Functional Programming
with C#."

The method GetNextLight2 receives the current and previous light with

the parameters and is declared to return a tuple containing the new current

and previous values. The two parameters are combined to a tuple using

parentheses, and the switch expression works on the tuple. With the cases

of the switch expression, the tuple pattern is used. If the state received has

a current value of yellow and a previous value of read, the next current

value is green. With a current value of yellow and a previous value of

flashing green, the next current value is red. With the other cases the

previous value is ignored using the discard pattern _. If the current value

is red, the next current value is yellow, no matter what the previous state

was (code file

CSharp8/SwitchStateSample/TrafficLightSwitcher.cs):

public (LightState Current, LightState Previous) GetNextLight2(

 LightState currentLight, LightState previousLight) =>

 (currentLight, previousLight) switch

 {

 (FlashingYellow, _) => (Red, currentLight),

 (Red, _) => (Yellow, currentLight),

 (Yellow, Red) => (Green, currentLight),

 (Green, _) => (FlashingGreen, currentLight),

 (FlashingGreen, _) => (Yellow, currentLight),

 (Yellow, FlashingGreen) => (Red, currentLight),

 _ => (FlashingYellow, currentLight)

 };

The invocation of GetNextLight2 now needs to pass the current and the

previous state, and receives a tuple from the method as shown in the

method UseTuplesAsync (code file

CSharp8/SwitchStateSample/TrafficLightRunner.cs):

public async Task UseTuplesAsync()

{

 LightState current = LightState.FlashingYellow;

 LightState previous = LightState.Undefined;

 while (true)

 {

 (current, previous) = _switcher.GetNextLight2(current, previous);

 Console.WriteLine($"new light: {current}, previous: {previous}");

 await Task.Delay(2000);

 }

}

Using expressions to create tuples

To let the traffic light keep the state of the flashing green 3 times, an

additional counter needs to be introduced. Instead of a tuple with two

values, a tuple with tree values can be used. The third value is now the

count which is used with the green flashing light. If the current light is

flashing green, and the count has a value of two, the light switches to

yellow. With a flashing green and all other count values, the

currentCount variable is incremented, and the new value returned

(code file

CSharp8/SwitchStateSample/TrafficLightSwitcher.cs):

public (LightState Current, LightState Previous, int count)

 GetNextLight3(

 LightState currentLight, LightState previousLight, int currentCount = 0) =>

 (currentLight, previousLight, currentCount) switch

 {

 (FlashingYellow, _, _) => (Red, currentLight, 0),

 (Red, _, _) => (Yellow, currentLight, 0),

 (Yellow, Red, _) => (Green, currentLight, 0),

 (Green, _, _) => (FlashingGreen, currentLight, 0),

 (FlashingGreen, _, 2) => (Yellow, currentLight, 0),

 (FlashingGreen, _, _) => (FlashingGreen, currentLight,

 ++currentCount),

 (Yellow, FlashingGreen, _) => (Red, currentLight, 0),

 _ => (FlashingYellow, currentLight, 0)

 };

Calling the GetNextLight3 method, the count is passed with the third

argument, and received with the tuple (code file

CSharp8/SwitchStateSample/TrafficLightRunner.cs):

public async Task UseTuplesWithCountAsync()

{

 LightState current = LightState.FlashingYellow;

 LightState previous = LightState.Undefined;

 int count = 0;

 while (true)

 {

 (current, previous, count) =

 _switcher.GetNextLight3(current, previous, count);

 Console.WriteLine($"new light: {current}, previous: {previous}, " +

 $"count: {count}");

 await Task.Delay(2000);

 }

}

Switch expressions with the property pattern

So far, the traffic light runner changes the light every two seconds.

Of course, this is not a real traffic light scenario. Depending on the light,

different timings should be used. Another value could be put into the tuple,

but at some point, instead of using tuples, custom types help with

readability. Now is the time to create the LightStatus struct defining

Current, Previous, FlashCount, and Milliseconds properties

(code file CSharp8/SwitchStateSample/LightStatus.cs):

public readonly struct LightStatus

{

 public LightStatus(LightState current, LightState previous,

 int seconds, int blinkCount) =>

 (Current, Previous, Milliseconds, FlashCount) =

 (current, previous, seconds, blinkCount);

 public LightStatus(LightState current, LightState previous, int seconds)

 : this(current, previous, seconds, 0) { }

 public LightStatus(LightState current, LightState previous)

 : this(current, previous, 3) { }

 public LightState Current { get; }

 public LightState Previous { get; }

 public int FlashCount { get; }

 public int Milliseconds { get; }

}

Instead of using the tuple pattern, now the property pattern is used to switch

on specific values based on the properties. A new instance of the

LightStatus is returned with the next value (code file

CSharp8/SwitchStateSample/TrafficLightSwitcher.cs):

public LightStatus GetNextLight4(LightStatus lightStatus) =>

 lightStatus switch

 {

 { Current: FlashingYellow } => new LightStatus(Red, FlashingYellow, 5000),

 { Current: Red } => new LightStatus(Yellow, lightStatus.Current, 3000),

 { Current: Yellow, Previous: Red } =>

 new LightStatus(Green, lightStatus.Current, 5000),

 { Current: Green } =>

 new LightStatus(FlashingGreen, lightStatus.Current, 1000),

 { Current: FlashingGreen, FlashCount: 2 } =>

 new LightStatus(Yellow, lightStatus.Current, 2000),

 { Current: FlashingGreen } =>

 new LightStatus(FlashingGreen, lightStatus.Current, 1000,

 lightStatus.FlashCount + 1),

 { Current: Yellow, Previous: FlashingGreen } =>

 new LightStatus(Red, lightStatus.Current, 5000),

 _ => new LightStatus(FlashingYellow, lightStatus.Current, 1000)

 };

With the next version on using the traffic light switcher, a new

LightStatus is created, and the delay is now based on the number of

milliseconds returned (code file

CSharp8/SwitchStateSample/TrafficLightRunner.cs):

public async Task UseCustomTypeAsync()

{

 var lightStatus = new LightStatus();

 while (true)

 {

 lightStatus = _switcher.GetNextLight4(lightStatus);

 Console.WriteLine($"new light: {lightStatus.Current}, " +

 $"previous: {lightStatus.Previous}, " +

 $"count: {lightStatus.FlashCount}, " +

 $"time: {lightStatus.Milliseconds}");

 await Task.Delay(lightStatus.Milliseconds);

 }

}

With the flow of the switch expression sample you’ve not only seen

different uses of the new switch expression with tuples and pattern

matching, but also a modern functional approach using immutable types.

The LightStatus type is declared readonly and a new instance is

returned with every iteration. Before using the LightStatus type, tuples

have been used, similar to the LightStatus with immutability in mind.

Indices and Ranges

Indices and ranges make it easier to access a range of data from

strings, arrays, and collections. An interesting aspect here is that .NET Core

2.1 added the Span type. With the Span type, memory (no matter if it's on

the heap or the stack) can be directly accessed, and it's easy to directly

access a split of the memory. Since the Span type has been released, many

existing APIs have new overloads where it's no longer necessary to deal

with memory arrays and the length of the memory to access, but instead the

Span can be used that knows itself about the length. While the Span

makes it easier to use these APIs, indices and ranges now offer direct

support from C#.

type="reference"

Reference

The Span type is explained in detail in Chapter 17, "Managed and

Unmanaged Memory."

Requirements

Some C# features require specific types from the framework. For

example, interpolated strings are based on the FormattableString

class. The foreach statement makes use of IEnumerable, and

IEnumerator interfaces. The using statement and declaration use the

IDisposable interface. These are just a few examples, and there are a

lot more. The new C# 8 feature with indexes and ranges uses the Index

and Range structs.

From Byte Array to Span to Ranges

To see the advantages of his new C# feature, let’s start a small

application. With this application, a byte array buffer should be filled. The

first six bytes of this buffer should be filled with a preamble – 6 times the

hex value 42, followed by the content of a file. The file is stored in the

UTF8 format, and the 3 bytes for the BOM (byte order mark) should be

removed. The 8 last bytes of the buffer should not be filled, so the

remaining content of the file should just be ignored.

Using byte arrays and offsets

The first version of the sample makes use of byte array and offsets in

the method BufferWithOffsetAndCount. One overload of the Read

method from the StreamReader class allows passing a byte array as the

first parameter, the offset where the write into the byte array should start,

and the number of bytes that should be read. The offset is here set to 3 to

write the first characters (after the 3-byte BOM) at index 6. The maximum

count of the bytes to read is calculated based on the length of the buffer

reduced by 8 and not to forget the offset. After the data is read, the first 6

bytes in the buffer are initialized to the hex value 42 which also overwrites

the BOM (code file CSharp8/RangesSample/Program.cs):

private static void BufferWithOffsetAndCount()

{

 Console.WriteLine("buffer with offset and count");

 byte[] buffer = new byte[64];

 using Stream stream = File.Open("QuickFox.txt", FileMode.Open);

 int offset = 3;

 int read = stream.Read(buffer, offset, count: buffer.Length - 8 - offset);

 Console.WriteLine($"read {read} bytes");

 byte init = 0x_42;

 for (int i = 0; i < 6; i++)

 {

 buffer[i] = init;

 }

 string s = Encoding.UTF8.GetString(buffer);

 Console.WriteLine(s);

 Console.WriteLine();

}

Using Span

The Span type allows some simplifications. Using the extension

method AsSpan with the byte array, a Span is returned that covers the

complete byte array. To read the file, another Span is created using the

Slice method. Slice returns a slice into the span passing the start value

and the length. The Read method of the StreamReader offers an

overload with a Span parameter. This way you don’t need to pass a start

position and a length because the Span knows about this itself. The length

still needs to be calculated on creating the slice. Filling the preamble with

the initial value, another Span is created. The Fill method is used to fill

the complete slice (code file

CSharp8/RangesSample/Program.cs):

private static void BufferWithSpan()

{

 Console.WriteLine("buffer with span");

 byte[] buffer = new byte[64];

 var bufferSpan = buffer.AsSpan();

 using Stream stream = File.Open("QuickFox.txt", FileMode.Open);

 int offset = 3;

 var spanForFile = bufferSpan.Slice(

 start: offset, length: bufferSpan.Length - 8 - offset);

 int read = stream.Read(spanForFile);

 Console.WriteLine($"read {read} bytes");

 byte init = 0x_42;

 bufferSpan.Slice(0, 6).Fill(init);

 string s = Encoding.UTF8.GetString(buffer);

 Console.WriteLine(s);

 Console.WriteLine();

}

Using Ranges with Span

With the new C# feature, another simplification can be done with

this scenario. Instead of using the Slice method of the Span type, a

range can be used. The second range is used to initialize the first six

elements. A range is defined using brackets containing .. (two dots). The

first value in the range specifies the start of the range. 0 defines the first

element. The first element starts with 0 as we are used to in C# using an

indexer. The second value in the range specifies the element after the last

element accessed, so the first six elements are accessed with the range

0..6. The first range specified makes use of the hat operator ^. Using the

hat operator, you can access elements starting from the last one. ^0

specifies the element after the last element, ^1 one element before that –

the last element (code file CSharp8/RangesSample/Program.cs):

private static void BufferWithSpanAndRanges()

{

 Console.WriteLine("buffer with span");

 byte[] buffer = new byte[64];

 var bufferSpan = buffer.AsSpan();

 using Stream stream = File.Open("QuickFox.txt", FileMode.Open);

 int offset = 3;

 var spanForFile = bufferSpan[3..^8];

 int read = stream.Read(spanForFile);

 Console.WriteLine($"read {read} bytes");

 byte init = 0x_42;

 bufferSpan[0..6].Fill(init);

 string s = Encoding.UTF8.GetString(buffer);

 Console.WriteLine(s);

 Console.WriteLine();

}

Index

As previously mentioned, to support the new index syntax, the

Index struct is defined. This type defines Value and IsFromEnd

properties. If IsFromEnd returns true, the value of the index is used to

access the collection from the end. The GetOffset method returns the

offset of the indexed element from the begin of the collection.

In the next code sample, the index is used to access a simple array. ix1 is

defined to access the first element, ix2 to access the last element with the

help of the hat operator, and ix3 is created with the constructor of the

Index struct to access the third-last element (code file

CSharp8/RangesSample/Program.cs):

private static void IndexSample()

{

 int[] data = { 1, 2, 3, 4, 5, 6 };

 Index ix1 = 0;

 Index ix2 = ^1;

 Index ix3 = new Index(3, fromEnd: true);

 ShowIndices(ix1, ix2, ix3);

 void ShowIndices(params Index[] indices)

 {

 foreach (var ix in indices)

 {

 Console.WriteLine($"value: {ix.Value}, " +

 $"is from end: {ix.IsFromEnd}, " +

 $"offset: {ix.GetOffset(length)}");

 Console.WriteLine($"value of array element: {data[ix]}");

 }

 }

}

Running the application, you’ll see output as shown here:

value: 0, is from end: False, offset: 0

value of the array element: 1

value: 1, is from end: True, offset: 5

value of the array element: 6

value: 3, is from end: True, offset: 3

value of the array element: 4

Ranges

To see the features of ranges, the method RangesSample is

defined. Six ranges are specified to access elements of an int array. r1

references the first up to the second element (remember the end specified

defines the element after). r2 uses the hat operator to reference elements.

The first element that’s referenced from this range is the fourth-last

element, and the range goes up to the second-last element. r3 defines a

range that goes up to the last element, starting from the fourth element. r4

starts with the first element up to the fourth. r5 references the complete

range. Besides using the range-syntax you can also use static members of

the Range struct to create a range. This is shown with the StartAt

method used to set the r6 variable. Besides StartAt you can also use the

EndAt method and the All property. With the ShowRanges method,

information about the range including the elements referenced by the range

are shown. Instance members of the Range type are the Start and End

properties, and the GetOffsetAndLength method that returns a tuple

containing the offset and the length (code file

CSharp8/RangesSample/Program.cs):

private static void RangesSample()

{

 int[] data = { 1, 2, 3, 4, 5, 6 };

 Range r1 = 0..2;

 Range r2 = ^4..^2;

 Range r3 = 3..;

 Range r4 = ..4;

 Range r5 = ..;

 Range r6 = Range.StartAt(4);

 ShowRanges(r1, r2, r3, r4, r5, r6);

 Console.WriteLine();

 void ShowRanges(params Range[] ranges)

 {

 foreach (var r in ranges)

 {

 (var offset, var length) = r.GetOffsetAndLength(data.Length);

 Console.WriteLine($"range start: {r.Start}, " +

 $"end: {r.End}, offset: {offset}, " +

 $"length: {length}, " +

 $"content: {string.Join(' ', data[r])}");

 }

 }

}

Running the application, you can see output as shown.

range start: 0, end: 2, offset: 0, length: 2, content: 1 2

range start: ^4, end: ^2, offset: 2, length: 2, content: 3 4

range start: 3, end: ^0, offset: 3, length: 3, content: 4 5 6

range start: 0, end: 4, offset: 0, length: 4, content: 1 2 3 4

range start: 0, end: ^0, offset: 0, length: 6, content: 1 2 3 4 5 6

range start: 4, end: ^0, offset: 4, length: 2, content: 5 6

Range and Index with String Arrays

So far byte arrays have been used in the samples. You can use

ranges and indices with any array types. In the following code snippet, an

index is used to access one string in the string array, and a range is used in

the foreach loop to access a range of strings (code file

CSharp8/RangesSample/Program.cs):

private static void RangeAndIndexWithStringArray()

{

 string[] names = { "James", "Niki", "Jochen", "Juan", "Michael",

 "Sebastian", "Nino", "Lewis" };

 string lewis = names[^1]; // uses an index to access Lewis

 Console.WriteLine(lewis);

 foreach (var name in names[2..^2]) // uses a range

 {

 Console.WriteLine(name);

 }

}

Range and Index with Strings

A string itself is a collection of characters - so you can use ranges

and indices directly with strings as well. The Substring method of the

String class is no longer required. The following code snippet defines the

string fox1 and uses several syntax variants to use an index and ranges to

access characters of the string. To pass both the name of the variable and

the range variable in an array list, the local function ShowStrings uses

an array of tuples (code file

CSharp8/RangesSample/Program.cs):

private static void RangeAndIndexWithStrings()

{

 string fox1 = "the quick brown fox jumped over the lazy dogs";

 string quick = fox1[4..9];

 string dog = fox1[^4..^1];

 string brownfoxjumped = fox1[10..];

 string thequick = fox1[..9];

 string fox2 = fox1[..];

 Console.WriteLine($"character accessed with index: {fox1[^2]}");

 ShowStrings(

 (nameof(fox1), fox1),

 (nameof(quick), quick),

 (nameof(dog), dog),

 (nameof(brownfoxjumped), brownfoxjumped),

 (nameof(thequick), thequick),

 (nameof(fox2), fox2));

 static void ShowStrings(params (string Name, string Value)[] vals)

 {

 Console.WriteLine(nameof(RangeAndIndexWithStrings));

 foreach (var s in vals)

 {

 Console.WriteLine($"{s.Name}, {s.Value}");

 }

 Console.WriteLine();

 }

}

Range and Index with Custom Collections

For using ranges and indices with custom collections, one way is to

offer methods, properties, and indexers with Index and Range

parameters. However, there’s also an easier option. These new operators are

pattern-based. To offer the index syntax with custom collections is that the

collection needs to be countable (by offering a Length or Count

property), and an indexer with int parameter needs to be available. To use

the range syntax, a method named Slice with int start and length

parameters needs to be available. The return type of the Slice method is not

relevant for a match to this method.

The sample collection is kept simple by using an int array internally which

is filled with numbers from 0 to 99. The Length property and the indexer

are implemented to support Index. The Slice method accepts start and

length parameters to support Range (code file

CSharp8/RangesSample/MyCollection.cs):

public class MyCollection

{

 private int[] _array = Enumerable.Range(0, 100).ToArray();

 public int Length => _array.Length;

 public int this[int index]

 {

 get => _array[index];

 set => _array[index] = value;

 }

 public int[] Slice(int start, int length)

 {

 var slice = new int[length];

 Array.Copy(_array, start, slice, 0, length);

 return slice;

 }

}

type="reference"

Reference

Implementing of indexers is explained in Chapter 6, “Operators and
Casts.”

The next code snippet shows how to use the custom collection. The index

and range operators can be used as expected. One element is accessed

passing an index with the hat operator, and a range of the collection is

accessed using the range operator (code file

CSharp8/RangesSample/Program.cs):

var coll1 = new MyCollection();

int element = coll1[^3];

Console.WriteLine(element);

var range = coll1[11..15];

foreach (var item in range)

{

 Console.WriteLine(item);

}

What about using existing collection classes such as List<T> with index

and range operators? The List<T> class already offers a Count property

and an indexer, so you can use the index operator with this type. However,

this class doesn’t have implementations for ranges. It’s not possible to

create a Slice extension method with two int parameters. Extension

methods don’t match the pattern-based mapping for the range operator (at

least with C# 8 and 9). As a workaround you can create an extension

method where a Range parameter is used. The following code snippet

shows an extension method named Slice to extend every type

implementing IList<T> with a Range parameter. After getting the offset

and length, the Skip and Take methods are used to return a subset (code

file CSharp8/RangesSample/ListExtensions.cs):

public static class ListExtensions

{

 public static IEnumerable<T> Slice<T>(this IList<T> list, Range range)

 {

 (var offset, var length) = range.GetOffsetAndLength(list.Count);

 return list.Skip(offset).Take(length).ToList();

 }

}

With this extension method in place, using the List<T> class it’s not only

possible to use the index operator, but also to invoke the Slice method

and pass a range (code file CSharp8/RangesSample/Program.cs):

List<int> list1 = new List<int>() { 1, 2, 3, 4, 5, 6 };

int item1 = list1[^2];

Console.WriteLine(item1);

var list2 = list1.Slice(2..^1);

foreach (var item in list2)

{

 Console.WriteLine(item);

}

Summary

This chapter examined all the new features of C# 8. Productivity

features such as switch expressions, enhancements with pattern matching,

using declarations, and async streams allow to reduce the code you need to

write. Nullable reference types will reduce errors. The most common

exception with .NET is the NullReferenceException which should

go away by a large amount when nullable reference types are used

everywhere. Default interface members allow for non-breaking changes

with interfaces. Indices and ranges can simplify the code and thus also

enhance productivity.

